期刊文献+

基于纳米材料的可视化比色检测技术在食源性致病菌检测中的应用研究进展 被引量:5

Applications of visual colorimetric detection methods based on nanomaterials in detecting foodborne pathogens
下载PDF
导出
摘要 食源性致病菌是一类以食物为载体,引起人体急、慢性中毒,给人们的生命健康带来损害的致病性细菌。传统的食源性致病菌检测方法通常耗时费力且价格昂贵。基于纳米材料的可视化比色检测技术灵敏度高、特异性强、操作简单、快速可靠,引起了人们的广泛关注。一些纳米材料具有类似过氧化物酶的活性,在其表面性质发生改变后会发生相应的颜色变化,还有一些自身色彩明艳的纳米材料,可通过特异性结合在食源性致病菌的表面实现比色信号的放大。该文综述了近几年基于纳米材料的可视化比色检测技术在食源性致病菌中的应用及这些可视化比色检测技术的优缺点,以期对新的可视化比色检测技术的构建和开发提供参考。 Foodborne pathogens are a major threat to human health,as they are responsible for many acute and chronic foodborne diseases. Traditional techniques to detect foodborne pathogens are time-consuming,labor-intensive and expensive,which limit their applications. In comparison,visual detection techniques based on nanomaterials have distinctive advantages,including high sensitivity,high specificity,simple operation,fast and reliable. Some nanomaterials have peroxidase-like activity and some nanomaterials have bright colors and can specifically bind to the surface of bacteria to achieve visual detection by amplifying colorimetric signals. Besides,some nanomaterials also change colors when their surface properties changed. This paper reviewed recent applications of nanomaterials-based visual detection techniques in detecting foodborne pathogens,and the advantages and disadvantages of different types of visualization detection techniques were also highlighted. This review aimed to provide a reference for constructing and developing new visualization techniques.
作者 周静 田风玉 焦必宁 何悦 ZHOU Jing;TIAN Fengyu;JIAO Bining;HE Yue(Citrus Research Institute,Southwest University,Chongqing 400712,China;Quality Supervision and Testing Centre for Citrus and Seedling,Ministry of Agriculture,Chongqing 400712,China)
出处 《食品与发酵工业》 CAS CSCD 北大核心 2019年第11期259-267,共9页 Food and Fermentation Industries
基金 国家自然科学基金(21405125) 国家农产品质量安全风险评估重大专项(GJFP2018013,GJFP2018004,GJFP2017013,GJFP2017004)
关键词 可视化比色检测技术 纳米材料 食源性致病菌 visualization detection techniques nanomaterials foodborne pathogens
  • 相关文献

参考文献3

二级参考文献58

  • 1Lal, S.; Link, S.; Halas, N. J. Nat. Photonics 2007, 1, 641. doi: 10.1038/nphoton.2007.223.
  • 2De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater. 2008, 20, 4225. doi: 10.1002/adma.v20:22.
  • 3Zijlstra, P.; Chon, J. W.; Gu, M. Nature 2009, 459, 410. doi: 10.1038/nature08053.
  • 4Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Adv. Mater. 2012, 24, 4811. doi: 10.1002/adma.201201690.
  • 5Liu, X. W.; Wang, D. S.; Li, Y. D. Nano Today 2012, 7, 448. doi: 10.1016/j.nantod.2012.08.003.
  • 6Gong, J. X.; Li, G. D.; Tang, Z. Y. Nano Today 2012, 7, 564. doi: 10.1016/j.nantod.2012.10.008.
  • 7Dykman, L.; Khlebtsov, N. Chem. Soc. Rev. 2012, 41, 2256. doi: 10.1039/c1cs15166e.
  • 8Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Chem. Rev. 2011, 111, 3669. doi: 10.1021/cr100275d.
  • 9Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740. doi: 10.1039/c1cs15237h.
  • 10Li, Z.; Zhang, S.; Halas, N. J.; Nordlander, P.; Xu, H. Small 2011, 7, 593. doi: 10.1002/smll.v7.5.

共引文献56

同被引文献44

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部