期刊文献+

基于改进SimRank的产品特征聚类研究 被引量:2

Product feature clustering based on improved Sim Rank
下载PDF
导出
摘要 针对在线用户评论中产品特征的提取和聚类问题进行了研究,提出一种改进的SimRank算法。将情感词-特征对放入二分网中,在二分网中使用改进后的SimRank算法计算特征词之间的相似度;再通过谱聚类算法对特征相似度进行聚类,提取网络产品的特征集合。以某电脑评论为例,从中提取情感词-特征对进行研究。实验结果显示,改进后的算法准确率更高。改进后的特征相似度检测方法可以作为检测特征相似度的有效方法,实验采用在线产品的评论语料。实验结果表明,使用改进后的SimRank相似度对特征词进行聚类提取出特征更加准确。 This paper studied the extraction and clustering of product features in online user reviews.It proposed an improved SimRank algorithm to put the affective word-feature pair into the binary network.And it used the improved SimRank algorithm to compute the similarity between the characteristic words.Then it adopted the spectral clustering algorithm to cluster the feature similarity.Extracts feature sets for network products.Taking a computer commentary as an example,this paper extracted affective word-feature pairs.The experimental results show that the improved algorithm has higher accuracy.The improved feature similarity detection method can be used as an effective method for detecting feature similarity.The experimental results show that using the improved SimRank similarity to extract the feature words is more accurate.
作者 刘臣 段俊 Liu Chen;Duan Jun(Business School,University of Shanghai for Science & Technology,Shanghai 200093,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第7期1951-1954,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(71401107,71774111)
关键词 SimRank算法 特征聚类 二分网 特征相似度 SimRank algorithm feature clustering binary network feature similarity
  • 相关文献

参考文献2

二级参考文献26

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2姚天昉,聂青阳,李建超,李林琳,陈柯,付宁.一个用于汉语汽车评论的意见挖掘系统[C]//中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集.北京:清华大学出版社,2006:260-281.
  • 3Hong Yu, Vasileios Hatzivassiloglou. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences [C]//Proceedings of EMNLP 2003,2003: 129-136.
  • 4Ellen Riloff, Janyce Wiebe, William Phillips. Exploiting subjectivity classification to improve information extraction [ C ]//Proceedings of AAAI-2005, 2005: 1106-1111.
  • 5Minqing Hu,Bing Liu. Mining opinion features in customer reviews[C]//Proceedings of AAAI-2004,2004: 755-760.
  • 6倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642.
  • 7Soo-Min Kim,Eduard Hovy. Automatic detection of opinion bearing words and sentences[C]//Proceedings of IJCNLP-2005,2005 : 61-66.
  • 8Jun Zhao,Kang Liu,GenWang. Adding redundant features for crfs based sentence sentiment classification [C]//Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, 2008: 117-126.
  • 9Minqing Hu, Bing Liu. Mining and summarizing customer reviews [C]//Proceedings of KDD-2004, 2004 : 168-177.
  • 10POPESCU A M,YATES A,ETZIONI Q.Class extraction from the World Wide Web[C] //Proc of AAAI-04 Workshop on Adaptive Text Extraction and Mining.San Jose,CA:American Association for Artificial Intelligence,2004:1-6.

共引文献163

同被引文献20

引证文献2

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部