期刊文献+

基于深度玻尔兹曼机的乐器分类问题研究 被引量:2

Research on musical instrument classification based on deep Boltzmann machine
下载PDF
导出
摘要 应用传统浅层模型处理乐器分类任务存在非线性拟合能力较差的问题,使分类准确率得不到有效保证,有必要引入深度学习方法来提升复杂任务的非线性建模能力。将深度玻尔兹曼机作为特征提取器提取表达能力更强的数据特征,分别以SVM与softmax分类器作为深度神经网络的顶层设置形成DBM+SVM组合模型与DBM+softmax组合模型,引入平均场理论和动量项因子优化网络训练过程。将上述两组模型及单一SVM分类器在五类乐器音频数据上进行对比实验,两种深度学习组合模型的分类准确率分别达到89.29%和87.5%,与传统浅层分类方法SVM的73.21%的准确率相比优势明显。实验结果表明深度玻尔兹曼机在乐器分类领域的应用颇具前景。 The application of traditional shallow model to instrument classification task has the problem of poor nonlinear fitting ability,so that the accuracy of classification was not guaranteed effectively.It is necessary to introduce deep learning method to improve the nonlinear modeling ability of complex tasks.This paper used deep Boltzmann machine as feature extractor to abstract more expressive deep learning features.It respectively used SVM and softmax classifier as top layer of deep neural network to form DBM+SVM and DBM+softmax combined model.Besides,this paper introduced the mean field theory and momentum factor to optimize the network training process,and compared the above two sets of models and single SVM classifier on 5 kinds of musical instruments audio data.The classification accuracy of the two types of deep learning combination models reached 89.29% and 87.5% respectively,compared with the accuracy of the traditional shallow classification method SVM of 73.21%.The experimental results show that the application of deep Boltzmann machine in the field of musical instrument classification is very promising.
作者 周畅 米红娟 Zhou Chang;Mi Hongjuan(College of Information Engineering,Lanzhou University of Finance & Economics,Lanzhou 730020,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第7期2031-2034,共4页 Application Research of Computers
关键词 深度玻尔兹曼机 乐器分类 深度学习 平均场理论 动量项 deep Boltzmann machine(DBM) instrument classification deep learning mean field theory momentum term
  • 相关文献

参考文献6

二级参考文献109

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 2史忠值.神经网络[M].北京:高等教育出版社,2009.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 4Rumelhart D,Hinton G,Williams R.Learning representationsby back-propagating errors[J].Nature,1986,323(6088):533-536.
  • 5Hinton G,Salakhutdinov R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
  • 6Ding Shi-fei,Zhang Yan-an,Chen Jin-rong,et al.Research onUsing Genetic Algorithms to Optimize Elman Neural Networks[J].Neural Computing and Applications,2013,23(2):293-297.
  • 7Ding Shi-fei,Jia Wei-kuan,Su Chun-yang,et al.Research ofNeural Network Algorithm Based on Factor Analysis and Cluster Analysis[J].Neural Computing and Applications,2011,20(2):297-302.
  • 8Lee T S,Mumford D.Hierarchical Bayesian inference in the vi-sual cortex[J].Optical Society of America,2003,20(7):1434-1448.
  • 9Serre T,Wolf L,Bileschi S,et al.Robust object recognition with cortex-like mechanisms[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(3):411-426.
  • 10Lee T S,Mumford D,Romero R,et al.The role of the primary visual cortex in higher level vision[J].Vision Research,1998,38 (15):2429-2454.

共引文献227

同被引文献20

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部