期刊文献+

基于跨层全连接神经网络的癫痫发作期识别 被引量:4

Epileptic EEG identification with cross layer fully connected neural network
下载PDF
导出
摘要 在缺乏足够先验知识下,自适应癫痫发作期识别异常困难。提出一种新的度量通道之间的同步特征计算方法(聚类划分互信息),以相关矩阵方式组织单窗口内全局同步特征模式,进而设计一种跨层全连接神经网络分类器,对非平稳同步特征模式实现自适应分类。实验表明该方法可获得[98.19%±0.24%]精确度,[98.27%±0.51%]敏感度和[98.11%±0.36%]特异度,超过了现有大部分方法的分类性能。另外,该方法无须去噪和去伪迹等预处理过程;而且其仅需设置一个超参数(时间窗),避免了过多的潜在错误参数设置而导致的分类性能的降低。 Under the circumstance of insufficient prior knowledge,it becomes even more important to adaptively classify the synchronization dynamics to accurately characterize the intrinsic nature of seizure activities represented by the EEG.This paper first measured the global synchronization by calculating clustering partition mutual information(MI) of all EEG data channels.Then it designed a cross layer fully connected net to adaptively characterize the synchronization dynamics captured correlation matrices and automatically identify the seizure states of the EEG.It also performed experiments over the CHB-MIT scalp EEG dataset to evaluate the proposed approach.It identified seizure states with an accuracy,sensitivity and specificity of [98.19%± 0.24%],[98.27%±0.51%],and[98.11%±0.36%],respectively.The resulted performance was superior to those of most existing methods over the same dataset.The approach alleviated the need for strictly denoising and artifact removing based on the EEG prior knowledge that is mandatory for existing methods.Only one hyper-parameter need be set manually to avoid getting worse performance because of complex parameter setting.
作者 王凤琴 卢官明 柯亨进 肖新凤 Wang Fengqin;Lu Guanming;Ke Hengjin;Xiao Xinfeng(College of Physics & Electronic Science,Hubei Normal University,Huangshi Hubei 435102,China;College of Telecommunications & Information Engineering,Nanjing University of Posts & Telecommunications,Nanjing 210003,China;School of Computer Science,Wuhan University,Wuhan 430072,China;Guangdong Polytechnic of Environmental Protection Engineering,Guangzhou 528216,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第7期2098-2103,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61071167,61501249)
关键词 聚类划分互信息 脑电 癫痫 同步 模式分类 跨层全连接神经网络 clustering partition mutual information EEG epilepsy synchronization pattern classification cross layer fully connected net
  • 相关文献

参考文献5

二级参考文献41

  • 1周昌贵.脑电图断诊要点[J].现代电生理学杂志,2004,11(3):165-184. 被引量:6
  • 2邱天爽,郑效来,鲍海平,赵庚申.一种基于支持向量机技术的癫痫脑电棘尖波识别方法[J].生物物理学报,2005,21(4):317-321. 被引量:2
  • 3白冬梅,邱天爽,李小兵.样本熵及在脑电癫痫检测中的应用[J].生物医学工程学杂志,2007,24(1):200-205. 被引量:25
  • 4Alkan A, Koklukaya E, Subasi A. Automatic seizure detection in EEG using logistic regression and artificial neural network [ J]. Journal of Neuroscience Methods, 2005, 148 : 167 - 176.
  • 5Subasi A, Alkan A, Koklukaya E, et al. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing [ J]. Neural Network, 2005, 15:955 - 997.
  • 6Chisci L, Mavino A, Perferi G, et al. Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines [J]. IEEE Trans on Biomed Eng, 2010, 57:1124 - 1132.
  • 7Ubeyli ED. Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals [ J]. Expert Systems with Applications, 2010, 37 : 233 - 239.
  • 8Han Min, Sun Leilei. EEG signal classification for epilepsy diagnosis based on AR model and RVM [ C ] //Wang Jun, Han Min, eds. 2010 International Conference on Intelligent Control and Information Processing. Dalian, Liaoning, China, 2010. 134 - 139.
  • 9Guler I, Guler NF, Ubeyli ED. Recurrent neural networks employing Lyapunov exponents for EEG signals classification [ J]. Expert Systems with Applications, 2005, 29 (3) : 506 - 514.
  • 10Asian K, Bozdemir H, Sahin C, et al. A radial basis function neural network model for classification of epilepsy using EEG signals [ J]. Journal of Medical Systems, 2008, 32(5) : 403 - 408.

共引文献34

同被引文献29

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部