摘要
主要讨论了一类高阶两点边值问题,首先利用已知的高阶两点边值问题的格林函数得到相关性质的结果,其次再利用 Leggett-Williams 不动点定理,详细研究以下高阶两点边值问题{-u (n)(t)=a(t)f(u(t)) t∈(0, 1)u (p)(1)=0, u (i)(0)=0 i=0,1,…,n-2 3个正解的存在性,其中n≥2, p∈{1, 2,…, n-2}.
A class of high order two-point boundary value problems has been discussed. Firstly using the green s function of the higher order two-point boundary value problem, the related properties have been obtained. Using the Leggett-Williams Fixed-Point Theorem, the existence of multiple solutions of following high order boundary value problem has been studied {u (n)(t)=a(t)f(u(t)) t∈(0, 1) u (p)(1)=0, u (i)(0)=0 i=0,1,…,n-2 where n≥2, p∈{1, 2,…, n-2}.
作者
达佳丽
王婷
张丽娟
DA Jia-li;WANG Ting;ZHANG Li-juan(Department of Mathematics,Zhixing College,Northwest Normal University,Lanzhou 730070,China)
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2019年第6期18-21,共4页
Journal of Southwest China Normal University(Natural Science Edition)
基金
西北师范大学知行学院2017年校级科学研究项目(2017001KA)
甘肃省高等学校科研项目(2015B-203)