期刊文献+

一类临界Schr?dinger方程的正基态径向解 被引量:1

Positive Ground State Radial Solutions for a Class of Critical Schr?dinger Equation
下载PDF
导出
摘要 研究了径向空间中带有Sobolev临界指数的Schrodinger方程,不要求方程临界项带有的位势满足周期或渐近周期的相关条件.主要利用Nehari流形和Ekeland变分原理找到相应流形上的极小化序列,进而证明基态径向解的存在性.最后运用强极大值原理证明方程的解是正解,从而得到方程的正基态径向解. In this paper, a Schroinger equation with critical Sobolev exponent in the radial space has been studied, and the potential of critical term is not periodic or asymptotic periodic. Nehari manifold and Ekeland’s variational principle have been applied to find a sequence of minimizing sequence, moreover, the existence of ground state solutions has been proved. Finally, strong maximum principle implies the solution is positive. Therefore, the existence of a positive ground state radial solution is established.
作者 杜瑶 唐春雷 DU Yao;TANG Chun-Lei(School of Mathematics and Statistics ,Southwest University,Chongqing 400715,China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2019年第6期22-26,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11471267) 重庆研究生科研创新项目(CYS17084)
关键词 SCHRODINGER方程 SOBOLEV临界指数 EKELAND变分原理 正基态径向解 Schrodinger equation Sobolev critical exponent Ekeland’s variational principle positive ground state radial solutions
  • 相关文献

参考文献3

二级参考文献23

  • 1Shibo Liu,Zupei Shen.Generalized saddle point theorem and asymptotically linear problems with periodic potential[J]. Nonlinear Analysis . 2013
  • 2Mohamed Benrhouma,Hichem Ounaies.Existence and uniqueness of positive solution for nonhomogeneous sublinear elliptic equations[J]. Journal of Mathematical Analysis and Applications . 2009 (2)
  • 3Zhengping Wang,Huan-Song Zhou.Positive solutions for a nonhomogeneous elliptic equation on R N without (AR) condition[J]. Journal of Mathematical Analysis and Applications . 2008 (1)
  • 4Norimichi Hirano.Multiple existence of solutions for a nonhomogeneous elliptic problem on R N[J]. Journal of Mathematical Analysis and Applications . 2007 (1)
  • 5Thomas Bartsch.Chapter 1 The Dirichlet problem for superlinear elliptic equations[J]. Handbook of Differential Equations: Stationary Partial Differential Equations . 2005
  • 6Shinji Adachi,Kazunaga Tanaka.Existence of positive solutions for a class of nonhomogeneous elliptic equations in R N[J]. Nonlinear Analysis . 2002 (5)
  • 7Shinji Adachi,Kazunaga Tanaka.Multiple positive solutions for nonhomogeneous elliptic equations[J]. Nonlinear Analysis . 2001 (6)
  • 8Shinji Adachi,Kazunaga Tanaka.Four positive solutions for the semilinear elliptic equation: in[J]. Calculus of Variations and Partial Differential Equations . 2000 (1)
  • 9Norimichi Hirano.Existence of entire positive solutions for nonhomogeneous elliptic equations[J]. Nonlinear Analysis . 1997 (8)
  • 10Addolorata Salvatore.Some multiplicity results for a superlinear elliptic problem in $\bbfR^N$. Topol. Methods Nonlinear Anal . 2003

共引文献13

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部