期刊文献+

基于分解的多目标花朵授粉算法 被引量:1

A Multi-objective Flower Pollination Algorithm Based on Decomposition
下载PDF
导出
摘要 在过去几十年里,许多多目标进化算法被广泛应用于解决多目标优化问题,其中一种比较流行的多目标进化算法是基于分解的多目标进化算法(MOEA/D)。花朵授粉算法是一种启发式优化算法,但迄今为止,花朵授粉算法在基于分解的多目标进化算法领域的研究还非常少。本文在基于分解的多目标进化算法的框架下,将花朵授粉算法拓展至多目标优化领域,提出一种基于分解的多目标花朵授粉算法(MOFPA/D)。此外,为了保证非支配解的多样性,本文提出一种基于网格的目标空间分割法,该方法从找到的Pareto最优解集中筛选出一定数量且分布均匀的Pareto最优解。实验结果表明,基于分解的多目标花朵授粉算法在收敛性与多样性方面均优于基于分解的多目标进化算法。 During the past decades, a variety of multi-objective evolutionary algorithms (MOEAs) have been widely used to solve all kinds of multi-objective optimization problems (MOPs). One of the representative MOEAs is the multi-objective evolution algorithm based on decomposition, called MOEA/D. The flower pollination algorithm (FPA) is a meta-heuristic optimization algorithm. However, to our best knowledge, so far there are few papers studying on FPA based on decomposition in the multi-objective optimization field. In this paper, under the framework of MOEA/D, we extend the initial FPA to decomposed-based multi-objective optimization field and further present a multi-objective FPA based on decomposition, called MOFPA/D. In addition, in order to keep the diversity of nondominated solutions in the external archive, we address a novel strategy, named grid-based segmentation of objective space to select some Pareto optimal solutions for output. The simulation results indicate that MOFPA/D is highly competitive with or superior to the initial MOEA/D in terms of solution convergence and diversity.
作者 陈泯融 黄广敬 CHEN Min-rong;HUANG Guang-jing(School of Computer Science, South China Normal University, Guangzhou 510631, China)
出处 《计算机与现代化》 2019年第7期1-8,共8页 Computer and Modernization
基金 国家自然科学基金资助面上项目(61872153)
关键词 多目标优化问题 基于分解的多目标进化算法 花朵授粉算法 非支配解 基于网格的方法 multi-objective optimization problems decomposed-based multi-objective evolutionary algorithm flower pollination algorithm nondominated solutions grid-based approach
  • 相关文献

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部