期刊文献+

基于全局流形结构的半监督学习室内定位算法 被引量:1

Indoor Localization Algorithm Based on Semi-supervised Learning of Global Manifold Geometry
下载PDF
导出
摘要 针对传统基于WLAN的指纹定位方法中,因需要密集采集参考点标记数据带来的指纹库构建工作开销大的问题,提出一种基于全局特征保持的半监督流形对齐指纹库构建算法。该算法仅利用少量采集时间开销大的标记数据,结合大量易采集的未标记数据,通过求解流形对齐目标函数,实现对未标记数据的位置标定,减少指纹库构建的消耗。同时,运用测地线距离得到全局流形结构以充分挖掘少量标记数据中的对应特征,提升在少量标记数据情况下构建的指纹库精度。真实场景的实验结果表明,所提算法可以显著降低离线指纹库的构建开销,同时可以取得较优的定位精度。 The construction of radio map is time consuming and labor intensive in the conventional wireless local area network (WLAN) indoor localization systems.In order to solve this problem, the paper proposes a semi-supervised manifold alignment radio map construction approach based on the global geometry of manifold structure.The proposed method utilizes a small number of labeled RSS which requires a huge time consuming to collect and plenty of unlabeled data that is easy to obtain.Then, the locations of plenty of unlabeled data can be obtained by calibrating the solution of the manifold alignment of objective function.In addition, the geodesic distance is utilized to capture the global geometry of manifold feature which can fully exploit the correspondence characteristics of the labeled RSS and its coordinates.Thus, it can improve the accuracy of radio map with limited labeled RSS data.The extensive experiments demonstrate that the proposed method can construct an accurate radio map at a low manual cost, as well as achieve a high localization accuracy.
作者 李世宝 王升志 张鑫 陈海华 刘建航 何怡静 LI Shi-bao;WANG Sheng-zhi;ZHANG Xin;CHEN Hai-hua;LIU Jian-hang;HE Yi-jing(College of Computer and Communication Engineering, China University of Petroleum (East China), Qingdao 266580, China)
出处 《计算机与现代化》 2019年第7期82-87,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(61601519) 中央高校基本科研业务费专项资金资助项目(18CX02134A,18CX02135A,18CX02137A)
关键词 无线局域网 室内指纹定位 全局流形结构 半监督流形对齐 指纹库构建 wireless local area network (WLAN) indoor fingerprinting localization global geometry of manifold structure semi-supervised manifold alignment radio map construction
  • 相关文献

参考文献8

二级参考文献62

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2王睿,赵方,彭金华,罗海勇,陆波,陆涛.基于WI-FI和蓝牙融合的室内定位算法[J].计算机研究与发展,2011,48(S2):28-33. 被引量:31
  • 3Fu Y, Huang S. Locally linear embedding Eigenspace analysis [C]. IFP-TR, UIUC, 2005; 1255-1263.
  • 4He X, Niyogi P. Locality preserving projections [C]. Neural Information Processing Systems, 2003: 1378-1384.
  • 5TenenbaumJ, Siivad D, Angford J. A global geometric framework for nonlinear dimensionality reduction [J ]. Science, 2000, 290 (5500): 2319-2323.
  • 6Roweis S, Saul K. Nonlinear dimensionality reduction by locally linear embedcling [J]. Science, 2000, 290 (5500).2323-2326.
  • 7Saul K, Roweis S. Think golbally, fit locally: Unsupervised learning of low dimensional manifolds[J]. Journal of Machine Learning Research, 2004, 4 (2): 119-155.
  • 8Zhang Z, ZHA H. Principal manifolds and nonlinear dimen sionality reduction via tangent space alignment[J]. SIAM J Scientific Computing, 2005, 6 (1): 313-338.
  • 9Beikin M, Niyogi P. Laplacian eigcnmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15 (6): 1373-1396.
  • 10Silva V D. Global versus local mehods in nonlinear dimensionality reduction [C]. Proceedings of Conference on Advances in Neural Information Processing Systems Cambridg: MA, USA: MIT Press, 2003: 705-712.

共引文献111

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部