期刊文献+

基于移动群智感知的极端驾驶行为感知方法

Detecting Extreme Driving Behaviors Based on Mobile Crowdsensing
下载PDF
导出
摘要 为提高驾驶安全性,减少交通事故的发生,本文提出一种基于移动群智感知的极端驾驶行为识别方法。对收集到的用户智能手机相关传感器的数据进行预处理,进而利用动态步数检测和随机森林等方法来识别乘客的用户情境信息。针对不同的极端驾驶行为,选取不同位置乘客的智能手机来进行数据的收集,综合考虑乘客的手机放置位置因素所造成的相关影响,实现多特征融合的极端驾驶行为感知。针对不同位置的乘客所感知的结果不一致问题,提出采用贝叶斯投票模型来解决。通过真实数据实验,结果表明本文方法能够有效地识别出司机的极端驾驶行为。 In order to improve driving safety and reduce traffic accidents, this paper proposes an extreme driving behavior recognition method based on mobile crowdsensing.The collected data of sensors related to users' smart phones are preprocessed, and then the context information of passengers is identified by means of the dynamic step number detection and the random forest methods.According to different extreme driving behaviors, smart phones of passengers in different positions are selected for data collection, and the impact of different phone places and multi-feature fusion is also considered in designing the extreme driving behavior detection method.Regarding the potential inconsistency of the results from passengers in different positions, a Bayesian voting model is proposed to solve the problem.Experimental results from real world datasets indicate that our method can effectively identify the extreme driving behavior of drivers.
作者 翟书颖 李茹 郭阳 ZHAI Shu-ying;LI Ru;GUO Yang(Mingde College, Northwestern Polytechnical University, Xi'an 710124, China;School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China)
出处 《计算机与现代化》 2019年第7期97-103,共7页 Computer and Modernization
基金 国家自然科学基金资助项目(61772428) 陕西省教育厅专项科研计划项目(18JK1169) 西北工业大学明德学院科研基金资助项目(2017XY02L01)
关键词 极端驾驶行为 情境识别 移动群智感知 群体决策 extreme driving behavior context recognition mobile crowdsensing group decision
  • 相关文献

参考文献2

二级参考文献24

  • 1孙玮,李晓莹.避免疲劳驾驶的“驾驶员警示系统”[J].交通世界,2006(01B):57-57. 被引量:13
  • 2李志春,何仁,林谋有,李佩林.驾驶员疲劳检测技术的研究现状及发展趋势[J].农机化研究,2006,28(5):197-199. 被引量:26
  • 3王磊,吴晓娟,俞梦孙.驾驶疲劳/瞌睡检测方法的研究进展[J].生物医学工程学杂志,2007,24(1):245-248. 被引量:35
  • 4李贞,冯晓毅.基于传感器技术的驾驶疲劳检测方法综述[J].测控技术,2007,26(4):1-3. 被引量:15
  • 5King L M,Nguyen H T, Lal S K L. Early Driver Fatigue Detection from Electroencephalography Signals using Artificial Neural Networks.Proceedings of the 28th IEEE EMBS Annual International Conference,New York City, USA,2006: 2187-2190.
  • 6Tran Y,Wijesuryia N,Thuraisingham R A,et al.Increase in Regularity and Decrease in Variability Seen in Electroencephalography (EEG)Signals from Alert to Fatigue During a Driving Simulated Task.30th Annual International IEEE EMBS Conference,Vancouver, BC,2008:1096-1099.
  • 7Yang G, Lin Y, Bhattacharya P.A Driver Fatigue Recognition Model Using Fusion of Multiple Features.Conf.Proc.IEEE Int. Conf.Syst.Man Cybern.,Waikoloa,HI,United States,2005 (2) : 1777-1784.
  • 8Jeong I C,Lee D H,Park S W,et al.Automobile Driver's Stress Index Provision System that Utilizes Eiectrocardiogram.IEEE Intell Veh Symp Proc,Istanbul,Turkey,2007:652-656.
  • 9Hostens I,Ramon H.Assessment of Muscle Fatigue in Low Level Monotonous Task Performance during Car Driving. Journal of Electromyography and Kinesiology,2005, i5 (3) : 266~274.
  • 10Hong T Y,Qin H B.Drivers Drowsiness Detection in Embedded System.IEEE Int.Conf.Veh.Electr.Saf, ICVES,Beijing,China,2007:1-5.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部