期刊文献+

PVT法生长n型4H-SiC电阻率的研究 被引量:3

Research on the Resistivity of N Type 4H-SiC Grown by Physical Vapor Transport
下载PDF
导出
摘要 采用PVT法掺氮得到n型4H-SiC体单晶。研究了生长温度、冷却孔直径和掺氮量对电阻率的影响。实验结果表明:生长温度越低,掺氮量越多,晶片电阻率越低;冷却孔直径越小,掺氮量越多,晶片电阻率分布越均匀。但掺氮量过多会导致晶体结晶质量下降。电阻率的分布与背景B和Al含量相关,随着C/Si的升高,生长台阶的降低,电阻率升高。通过调整温场和优化掺氮工艺,获得了结晶质量较好的n型4H-SiC单晶。 Nitrogen-doped 4H–SiC single crystals grown by physical vapor transport were investigated. The effect of growth temperature, cooling hole diameter and content of N2 on resistivity were studied. The experimental results show that the lower growth temperature is, the more N2 is doped, the lower wafer resistivity is. The smaller the diameter of cooling hole is, the more N2 is doped, the higher distribution uniformity of the wafer resistivity is. However, excessive content of N2 would decrease the crystalline quality. The resistivity distribution associates with the background content of B﹠Al. With the increase of C/Si and the decrease of growth steps, the resistivity increases. By adjusting the temperature field and optimizing process, n type 4H-SiC with better crystalline quality was obtained.
作者 侯晓蕊 王英民 李斌 魏汝省 刘燕燕 田牧 王程 王光耀 HOU Xiaorui;WANG Yingmin;LI Bin;WEI Rusheng;LIU Yanyan;TIAN Mu;WANG Cheng;WANG Guangyao(The Second Research Institute of CETC, Taiyuan, 030024, China)
出处 《电子工艺技术》 2019年第3期164-167,共4页 Electronics Process Technology
基金 国际科技合作项目(2013DFR10020) 中国电子科技集团公司技术创新基金(5511234) 山西省科技重大专项(20181101007)
关键词 n型4H-SiC 生长温度 冷却孔直径 掺氮量 电阻率均匀性 n type 4H-SiC growth temperature cooling hole diameter content of N2 resistivity distribution uniformity
  • 相关文献

参考文献7

二级参考文献34

  • 1[1]Hobgood D,Brady M,Brixius W,et al.Status of large diameter SiC crystal growth for electronic and optical applications[J].Mater.Sci.Forum.,2000,338-342:3.
  • 2[2]Weitzel C E.Silicon carbide high frequency devices[J].Mater.Sci.Forum.,1998,264-268:907.
  • 3[3]Nakamura D,Gunjishima I,Yamaguchi S,et al.Ultrahigh-quality silicon carbide single crystals[J].Nature,2004,430:1009.
  • 4[4]Tairov Yu M,Tsvetkov V F.General principles of growing large-size single crystals of various silicon carbide polytypes[J].J.Cryst.Growth,1981,52:146.
  • 5[5]Herro Z G,Epelbaum B M,Bickermann M,et al.Effective increase of single-crystalline yield during PVT growth of SiC by tailoring of temperature gradient[J].J.Crystal Growth,2004,262:105.
  • 6[6]Herro Z G,Bickermann M,Epelbaum B M,et al.Effective increase of single-crystalline yield during PVT growth of SiC by tailoring of radial temperature gradient[J].Mater.Sci.Forum.,2003,433-436:67.
  • 7[1]Rocabois P, Chatillon C, Bernard C, et al. [J]. High Temp High Press, 1995, 27-28: 25.
  • 8[2]Drowart J, De Maria G, Inghram M G. [J]. Phys J Chem,1958, 29: 1015-1023.
  • 9[3]Glass R C, Henshall D, Tsvetkov V F, et al. [J]. Phys Stat Sol (b), 1997, 202: 149.
  • 10[5]Yakimova R, Syvajrvi M, Iakimov T, et al. [J]. Applied Surface Science, 2001, 184: 27-36.

共引文献21

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部