期刊文献+

基于机会约束的MIMO雷达多波束稳健功率分配算法 被引量:7

Chance Constrained Based Robust Multibeam Power Allocation Algorithm for MIMO Radar
下载PDF
导出
摘要 结合目标雷达散射截面积的随机性,该文提出了一种针对多目标定位的稳健功率分配算法.目的是在高概率满足多目标定位精度约束的前提下,尽可能的节省集中式多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达的功率资源.该文首先推导了各个目标定位误差的克拉美罗界(Cramer-Rao Lower Bound,CRLB).然后以最小化MIMO雷达发射功率为目标,在满足多目标定位CRLB不大于给定误差的联合概率超过某一置信水平的条件下建立了机会约束模型.通过构建问题的库恩塔克条件,该文将机会约束问题等效变换为非线性方程求解问题,并解析地给出了最优解表达式.最后,仿真实验验证了算法的有效性和稳健性. Taking into account the probabilistic uncertainty on the target radar cross section parameter,a robust power allocation scheme is presented for multiple target localization.The aim of this scheme is to minimize the total power consumption of the colocated MIMO radar,while meeting a specified multi-target localization accuracy requirement with high probability.Firstly,the Cramer Rao Lower Bound(CRLB) is derived.Then,the chance constrained model is built with the objective of minimizing the total transmit power of the colocated MIMO radar,while the joint CRLB outage probability is enforced to be greater than a specified probability.By formulating the Karush-Kuhn-Tuckers conditions,we transform the resulting chance constrained problem into a nonlinear equation solving problem,and then obtain its optimal solution in an analytical form.Finally,the effectiveness and robustness of the proposed algorithm are verified by the simulation results.
作者 严俊坤 陈林 刘宏伟 马时飞 王鹏辉 保铮 YAN Jun-kun;CHEN Lin;LIU Hong-wei;MA Shi-fei;WANG Peng-hui;BAO Zheng(National Laboratory of Radar Signal Processing,Xidian University,Xi′an,Shaanxi 710071,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第6期1230-1235,共6页 Acta Electronica Sinica
基金 国家自然科学基金青年项目(No.61601340,No.61701379) 国家杰出青年科学基金(No.61525105) 陕西省高校科协青年人才托举计划资助课题(No.20170102) 雷达信号处理国家重点实验室与水下信息与控制重点实验室基金
关键词 MIMO雷达 多目标定位 功率分配 机会约束规划 MIMO radar multi-target localization power allocation chance constrained pro gramming
  • 相关文献

参考文献2

二级参考文献18

  • 1周万幸,吴呜亚,胡明春.双(多)基地雷达系统[M].北京:电子工业出版社,2011:1-30.
  • 2Van Trees H L, Bell K L, and Wang Y. Bayesian Cramer-Rao bounds for multistatic radar[C]. Proceedings of the Waveform Diversity Design, Washington, 2006: 856-859.
  • 3Godrich H, Petropulu A, and Poor H V. Sensor selection in distributed multiple-radar architectures for localization: a knapsack problem formulation[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 247-260.
  • 4Godrich H, Petropulu A, and Poor H V. Power allocation strategies for target localization in distributed multiple-radar architecture[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226-3240.
  • 5Chavali P and Nehorai A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715-729.
  • 6Hero A O and Cochran D. Sensor management: past, present, and future[J]. IEEE Sensors Journal, 2011, 11(12): 3064- 3075.
  • 7Boyd S and Vandenberghe L. Convex Optimization[M]. Cambridge: UK, Cambridge University, 2004: 67-127.
  • 8Rao S S. Ei~gineering Optimization: Theory and Practice[M], 3rd Ed, New York: Wiley, 1996: 383-425.
  • 9Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications[M]. Norwood, MA: Artech House, 2004: 1-82.
  • 10Bar-Shalom Y, Li X R, and Kirubarajan T. Estimation with Applications to Tracking and Navigation[M]. New York, NY: John Wiley &: Sons, 2001: 199-295.

共引文献22

同被引文献48

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部