摘要
为解决目前配电网前端数据数量大、缺省多、分析复杂等问题,本文提出一种适用于主动配电网的状态估计算法来管理分析前端数据。采用了基于决策树自标识的主动配电网状态估计算法,通过估计前预处理数据,对数据进行分类以及修正,使输入状态估计模型中的数据有更好的相容性。同时,本文针对分布式能源配套量测装置少的问题,建立了考虑分布式电源的状态估计模型,对分布式能源缺省数据进行补全修正,提高输入数据的质量。该方法运用到实际算例中可以看出,对比传统的状态估计,基于决策树自标识的主动配电网状态估计算法有更好的估计效果以及更快的迭代速度。因此本文提出的算法能有效的运用到当前大规模分布式能源接入的配电网状态估计中。
In order to solve the problems of large number of front-end data,many defaults and complex analysis in distribution network,a state estimation algorithm suitable for active distribution network is proposed to manage and analyze front-end data.An active distribution network state estimation algorithm based on self-identification of decision tree is adopted.By pre-processing data before estimation,data are classified and corrected to make the data in the input state estimation model more compatible.At the same time,aiming at the problem of fewer measurement devices for distributed energy,a state estimation model considering distributed generation is established to correct the default data of distributed energy and improve the quality of input data.Compared with the traditional state estimation,the method based on self-identification of decision tree has better estimation effect and faster iteration speed.Therefore,the proposed algorithm can be effectively applied to the current large-scale distributed energy access distribution network state estimation.
作者
马春雷
丁健
陈宣林
杜雪
付滨
刘兵
MA Chunlei;DING Jian;CHEN Xuanlin;DU Xue;FU Bin;LIU Bing(Guiyang Power Supply Bureau of Guizhou Power Grid Co.,Ltd.,Guiyang 550002 Guizhou,China)
出处
《电力大数据》
2019年第5期26-32,共7页
Power Systems and Big Data
关键词
数据校验
数据质量标识
决策树
状态估计
data verification
data quality identification
decision tree
state estimation