摘要
针对非线性多扩展目标跟踪问题,提出了一种基于修正无偏转换量测(modified unbiased converted measurement, MUCM)的高斯逆威沙特概率假设密度(Gaussian inverse Wishart probability hypothesis density, GIW-PHD)滤波器.首先,该方法利用MUCM将雷达非线性量测转换为笛卡尔坐标系下的伪线性量测,并用统计方法得到转换量测误差的协方差矩阵.然后,给出MUCM-GIW-PHD滤波算法的具体实现过程,继而在非线性条件下对多扩展目标的运动参数和形状参数进行联合估计.最后,仿真实验验证了算法的有效性.
Aimed at the problem of nonlinear multi-extended target tracking, a Gaussian inverse Wishart probability hypothesis density (GIW-PHD) filter is proposed in this article based on the modified unbiased converted measurement (MUCM). First, by using MUCM method, the radar’s nonlinear measurement is expressed as pseudo-linear measurement in cartesian coordinate system and a coordinated variance matrix of converted measurement error is obtained by statistical method. Then, the concrete implementation process of MUCM-GIW-PHD filtering algorithm is given to joint estimate the motion parameters and shape parameters of the multi-extended targets under nonlinear condition. Finally, a simulation test has justified the effectiveness of the proposed algorithm.
作者
陈辉
赵维娓
CHEN Hui;ZHAO Wei-wei(College of Electrical and Information Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China)
出处
《兰州理工大学学报》
CAS
北大核心
2019年第3期95-100,共6页
Journal of Lanzhou University of Technology
基金
国家自然科学基金(61873116,61763029,51668039)
甘肃省科技计划项目(18JR3RA137,18YF1GA065)
关键词
多扩展目标
转换量测
概率假设密度
随机矩阵
multi-extended target
converted measurement
probability hypothesis density
random ma trix