期刊文献+

半环类CR(n,1)上的格林D-关系 被引量:2

Green’s D-relation on a semiring CR(n,1)
下载PDF
导出
摘要 研究加法半群是带,乘法半群是完全正则半群的半环上的格林关系,对D ·∩D +,D ·∩L +,D ·∩R +进行了刻画,给出了D ·∩D +是同余关系的充分必要条件. It is studied the Green’s relation of semiring whose additive semigroup should be a band and multiplicative semigroup should be a completely regular semigroup. The characterization of relations D ·∩D +, D ·∩L +, D ·∩R + is carried out and the sufficient and necessary condition of D ·∩D + being congruence relation is given.
作者 练利锋 LIAN Li-feng(Department of Mathematics and Information Engineering, Chongqing University of Education, Chongqing 400067, China)
出处 《兰州理工大学学报》 CAS 北大核心 2019年第3期164-167,共4页 Journal of Lanzhou University of Technology
基金 重庆市教委科学技术研究项目(KJ1601410) 重庆市人文社科重点研究基地“重庆市统筹城乡教师教育研究中心”(18JDZDWT03)
关键词 半环 同余 格林关系 semiring variety congruence Green’s relation
  • 相关文献

参考文献2

二级参考文献12

  • 1田振际,王宇,金颖勤.几类特殊半群与理想[J].兰州理工大学学报,2007,33(1):146-147. 被引量:5
  • 2田振际,金颖勤,王宇.GV-半群的结构[J].兰州理工大学学报,2007,33(5):156-157. 被引量:2
  • 3Petrich M, Reilly N R. Completely Regular Semigroup [M]. New York: Wiley, 1999,.
  • 4Howie J M. Fundamentals of Semigroup Theory [M]. Oxford: Oxford Science Publication, 1995.
  • 5Burris S, Sankppanaver H P. A Course in Universal Algebra [M]. New York: Springer Verlag, 1981.
  • 6Pastijn F, Zhao X Z. Greents :D-relation for the multiplicative reduct of an idempotent semiring [J] Arch.Math.(Brno), 2000,36:77-93.
  • 7Zhao X Z, Shum K P, Guo Y Q. :-subvarieties of the variety of idempotent semirings [J]. Algebra Univers 2001,46:75-96.
  • 8Zhao X Z, Guo Y Q, Shum K P. -subvarieties of the variety of idempotent semirings [J]. Algebra Colloquium 2002,9:15-28.
  • 9Zhao X Z. Idempotent semirings with a commutative additive reduct [J]. Semigroup Forum, 2002,64:289-296.
  • 10Pastijn F, Zhao X Z. Varieties of idempotent semirings with commutative addition [J]. Algebra Universalis 2005,54:301-321.

共引文献6

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部