期刊文献+

一种改进跨层拥塞控制的无线传感网络蚁群路由算法 被引量:1

Ant Colony Optimization Routing based on Improving Cross-layer Congestion Control in WSNs
下载PDF
导出
摘要 针对无线传感器网络(WSNs)容易产生节点拥塞、造成网络丢包、降低网络性能问题,在能量高效蚁群路由(Improved Energy-Efficient Ant-Based Routing,IEEABR)算法的基础上,提出了一种改进跨层拥塞控制的无线传感网络蚁群路由算法(Congestion Control IEEABR,CCIEEABR)。该算法基于主动控制拥塞的设计思想,综合考虑各层之间的信息共享机制,实现流量的分散。仿真结果表明,该算法有效降低了数据的丢包率,最优平均端到端时延下降21%,具有较高的实用价值。 Wireless sensor networks(WSNs) are prone to node congestion, resulting in packet loss and degrading the network performance. In response to this pheromone, in this paper, we propose an cross-layer congestion control improved energy-efficient ant-based routing algorithm (CCIEEABR), which is based on an improved energy-efficient ant-based routing algorithm (IEEABR). The idea of algorithm is based on an active congestion control, considering information sharing mechanism between the layers, and realizing the dispersion of traffic. Simulation results show that the proposed algorithm has superiority over traditional algorithm in data packet delivery ratio, reducing the end-to-end delay by 21%, thus being more suitable to a practical wireless sensor network.
作者 胡国伟 HU Guo-wei(Ningbo Polytechnic, Ningbo 315800, China)
出处 《浙江工商职业技术学院学报》 2019年第2期34-36,共3页 Journal of Zhejiang Business Technology Institute
基金 浙江省教育厅资助项目“基于群智能的无线传感网络故障容错关键技术研究”(编号Y201728519)阶段性研究成果
关键词 蚁群 跨层 惩罚机制 拥塞控制 无线传感网络 Ant Colony Optimization(ACO) cross-layer punishment mechanism congestion control WSNs
  • 相关文献

参考文献2

二级参考文献21

  • 1PERKINS C E, ROYER E M. Ad-hoc on-demand distance vector routing [ C ] //Second IEEE Workshop on Mobile Computing Systems and Applications ( WMCSA '99 ). 1999:90-100.
  • 2COLORMI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies [ C ]// European Conference on Artificial Life (Proceedings of ECAL). 1991:134-142.
  • 3LIU Z, KWIATKOWSKA M. A biologically inspired QoS routing algorithm for mobile ad hoc networks [ C ]// 19th International Conference on Advanced Information Networking and Applications (AINA). 2005:426-431.
  • 4SCHOONDERWOERD R, HOLLAND O, BRUTEN J, et al. Ant-based load balancing in telecommunications networks [Jl. Adapt Behavior, 1996(5):169-207.
  • 5IYENGAR S, WU H C, BALAKRISHNAN N, et al. Biologically inspired cooperative routing for wireless mobile sensor networks [ J ]. IEEE System Journal, 2007, 9( 1 ) :29-37.
  • 6LIAO W H, KAO Y, FAN C M. An ant colony algorithm for data aggregation in wireless sensor networks [ C ] /J International Conference on Sensor Technologies and Applications. 2007 : 101-106.
  • 7CAMILO T, CARRETO C, SILVA J, et al. An energy- efficient ant base routing algorithm for wireless sensor networks [ C ] // ANTS 2006-Fifth International Workshop on Ant Colony Optimization and Swarm Intelligence. 2006:49-59.
  • 8DI CARO G, DORIGO M. AntNet: Distributed stigmergetic control for communications networks [ J 1. Journal of Artificial Intelligence Research, 1998, 9:317-365.
  • 9YAN J F, GAO Y, YANG L. Ant colony optimization for wireless sensor networks routing [ C ] // Machine Learning and Cybernetics (ICMLC) 2011 International Conference. 2011:400-403.
  • 10HUANG R, CHEN Z H, XU G H. Energy-aware routing algorithm in WSN using predication-mode [ C ] // Communications, Circuits and Systems (ICCCAS). 2010 : 103-107.

共引文献15

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部