期刊文献+

A review of recent researches on Bunsen reaction for hydrogen production via S–I water and H2S splitting cycles 被引量:7

下载PDF
导出
摘要 The Bunsen reaction is the center reaction for both the sulfur–iodine water splitting cycle for hydrogen production and the novel hydrogen sulfide splitting cycle for hydrogen and sulfuric acid production from the sulfur-containing gases.This paper reviews the research progress of the Bunsen reaction in recent 10–15 years.Researches were initially focused on the optimization of the operating conditions of the conventional Bunsen reaction requiring excessive water and iodine to improve the products separation efficiency and to avoid the side reactions and iodine vapor deposition.Alternative methods including electrochemical methods,precipitation methods,and non-aqueous solvent methods had their respective advantages,but still faced challenges.In development of the technology of H2S splitting cycle,dissolving iodine in toluene solvent could render the Bunsen reaction to occur with the flowable I2 stream at ambient temperature such that the side reactions and iodine vaporization can be avoided and the corrosion hazard lessened.It also prevented the Bunsen reaction from using excessive iodine and water.The products from the Bunsen reaction including HI,H2SO4,H2O,and toluene could be directly electrolyzed. The Bunsen reaction is the center reaction for both the sulfur–iodine water splitting cycle for hydrogen production and the novel hydrogen sulfide splitting cycle for hydrogen and sulfuric acid production from the sulfur-containing gases.This paper reviews the research progress of the Bunsen reaction in recent 10–15 years.Researches were initially focused on the optimization of the operating conditions of the conventional Bunsen reaction requiring excessive water and iodine to improve the products separation efficiency and to avoid the side reactions and iodine vapor deposition.Alternative methods including electrochemical methods,precipitation methods,and non-aqueous solvent methods had their respective advantages,but still faced challenges.In development of the technology of H2S splitting cycle,dissolving iodine in toluene solvent could render the Bunsen reaction to occur with the flowable I2 stream at ambient temperature such that the side reactions and iodine vaporization can be avoided and the corrosion hazard lessened.It also prevented the Bunsen reaction from using excessive iodine and water.The products from the Bunsen reaction including HI,H2SO4,H2O,and toluene could be directly electrolyzed.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第6期46-58,共13页 能源化学(英文版)
基金 financial supports from the National Natural Science Foundation of China(21576183) Natural Science and Technology Research Council of Canada(STPGP-350428-07)
  • 相关文献

参考文献1

二级参考文献1

共引文献15

同被引文献33

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部