摘要
Nitrogen fixation is one of the most important and challenging process in production of ammonia at ambient temperature. We have first performed density function theory to propose the edge of Janus MoSSe(EJM) monolayer as a potential catalyst for nitrogen reduction reaction. Our results show that the superficial D-band centers play an important role in nitrogen fixation. The strain effects greatly alter the D-band center, and further change the interaction between the adsorbates and the surface of catalysts.Our findings provide a new thought into designing transition-metal chalcogenide catalysts for nitrogen fixation.
Nitrogen fixation is one of the most important and challenging process in production of ammonia at ambient temperature. We have first performed density function theory to propose the edge of Janus MoSSe(EJM) monolayer as a potential catalyst for nitrogen reduction reaction. Our results show that the superficial D-band centers play an important role in nitrogen fixation. The strain effects greatly alter the D-band center, and further change the interaction between the adsorbates and the surface of catalysts.Our findings provide a new thought into designing transition-metal chalcogenide catalysts for nitrogen fixation.
基金
supported by the National Natural Science Foundation of China (Grant no. 51302079 and 11675051)
the Natural Science Foundation of Hunan Province (Grant no. 2017JJ1008)