期刊文献+

正则双单ω~2-半群

REGULAR BISIMPLE ω~2-SEMIGROUPS
下载PDF
导出
摘要 本文研究了幂等元的ω^2-链及广义Bruck-Reilly扩张.利用扩张的方法,获得了正则双单ω^2-半群的结构定理. In this paper, we study the ω^2-chain of idempotent elements and generalized Bruck-Reilly expansion. By using the expansion method, the structure theorem of regular bisimple ω^2--semigroups is obtained.
作者 汪立民 商宇 冯莹莹 WANG Li-min;SHANG Yu;FENG Ying-ying(School of Mathematics,South China Normal University,Guangzhou 510631,China;School of Mathematics and Statistics,Puer University,Puer 665000,China;Department of Mathematics,Foshan University,Foshan 528000,China)
出处 《数学杂志》 2019年第4期566-574,共9页 Journal of Mathematics
基金 国家自然科学基金资助(11871150) 普洱学院创新团队(CXTD003)
关键词 ω^2-链 广义Bruck-Reilly扩张 ω^2-半群 ω^2-chain generalized Bruck-Reilly extension ω^2-semigroup
  • 相关文献

参考文献3

二级参考文献10

  • 1Howie, J.M., Fundamentals of Semigroup Theory, Clarendon Press. Oxford, 1995.
  • 2Munn, W.D.,O-Bisimple inverse semigroups, Journal of Algebra, 1970, 15: 570-588.
  • 3Munn, W.D., Regular ω-semigroups, Glasgow Mathematical Journal, 1968, 9: 46-66.
  • 4Petrich, M., Inverse Semigroups, Wiley -Interscience, New York, 1984.
  • 5Reilly, N.R., Bisimple ω-semigroups, Proceedings of the Glasgow Mathematical Association, 1966, 7: 160-167.
  • 6Warne, R.J., Bisimple inverse semigroups mod groups, Duke Math J., 1967, 34: 787-811.
  • 7Warne, R.J., A class of bisimple inverse semigroups, Pacific Journal of Mathematics, 1966, 18: 563-577.
  • 8Warne, R.J., I-bisimple semigroups, Transactions of the American Mathematical Society, 1968, 130: 367-386.
  • 9Wang Li-Min, Trace-Kernel-Operator Semigroups of Bisimple ω-semigroups, Semigroup Forum., 2000, 60: 424-435.
  • 10汪立民,商宇,CUI Shangbin.Regular Bisimple ω^2-semigroups[J].数学进展,2008,37(1):121-122. 被引量:9

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部