期刊文献+

单参数Chen系统的部分状态线性化同步

PARTIAL STATES LINEARIZED SYNCHRONIZATION OF THE SINGLE PARAMETER CHEN SYSTEM
下载PDF
导出
摘要 本文研究了单参数Chen系统的部分状态线性化同步问题.利用反馈线性化以及对线性化系统的误差分析,发现仅对响应系统的第二个状态变量实施控制,就能实现单参数Chen系统的全部状态同步,最后数值仿真表明理论分析的正确性和同步控制器的有效性. The partial states linearized synchronization problem of the single parameter Chen system is studied in this paper. By the feedback linearized method and the error analysis of the linearized system, it is found that if only the second state variable of the response system is controlled, all states of the single parameter Chen system can be synchronized. Finally,the numerical simulations show that the theoretical analysis is correct and the synchronization controller is effective.
作者 李德奎 Li De-kui(Department of Science Teaching,Gansu University of Chinese Medicine,Dingxi 743000,China)
出处 《数学杂志》 2019年第4期601-608,共8页 Journal of Mathematics
基金 甘肃省自然科学基金项目(1610RJZA080) 甘肃省高等学校科研项目(2017A-155)
关键词 相对阶 部分状态线性化 单参数Chen系统 同步 relative order a portion of states linearization single parameter Chen system synchronization
  • 相关文献

参考文献6

二级参考文献69

  • 1王繁珍,齐国元,陈增强,袁著祉.一个四翼混沌吸引子[J].物理学报,2007,56(6):3137-3144. 被引量:46
  • 2Mainieri R, Rehacek J. Projective synchronization in three- dimensional chaotic systems [ J ]. Phys Rev Lett, 1999,82 ( 15 ) :3042 - 3045.
  • 3Grassi G. Propagation of projective synchronization in a series connection of chaotic systems [ J ]. Journal of the Franklin Institute ,2010,347 ( 2 ) :438 - 451.
  • 4Hu Manfeng, Xu Zhenyuan, Zhang Rong. Full state hybrid projective synchronization in continuous-time chaotic( hyperchaotic) systems[ J ]. Commun in Nonlinear Sci and Numer Simul, 2008,13, (2) :456 - 464.
  • 5Song Zheng, Gaogao Dong, Qinsheng Bi. A new hyperchaotic system and its synchronization [ J ]. Applied Mathe-matics and Computation, 2010,215 (9) :3192 - 3200.
  • 6Li G H. Generalized projective synchronization between Lorenz system and Chen system [ J ]. Chaos Solitons Fractals, 2007,32(4) : 1454 - 1458.
  • 7Li W, Chen X. Projective synchronization of Chua' s chaotic system with dead-zone in the control input[ J]. Commun Nonlinear Sci Numer Simu1,2009,14(7 ) :3100 - 3107.
  • 8Cai N, Jing Y, Zhang S. Modified projective synchronization of chaotic systems with disturbances via active sliding mode control [ J ]. Commun Nonlinear Sci Numer Simul, 2010,15(6) :1613 - 1620.
  • 9Song zheng, Gaogao Dong, Qinsheng Bi. Adaptive modified function projective synchronization of hyper-chaotic systems with unknown parameters [ J ]. Commun Nonlinear Sci Numer Simul, 2010,15 ( 11 ) :3547 - 3556.
  • 10Du H,Zeng Q, Wong C. Function projective synchronization of different chaotic systems with uncertain parameters [J]. Phys LettA, 2008, 372(33) :5402 -5410.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部