摘要
讨论了有序Banach空间E中Riemann-Liouville分数阶Robin边值问题:-Dα0+u(t)=f(t,u(t)),0≤t≤1,u(0)=u′(1)=θ正解的存在性,其中1<α≤2,f:[0,1]×P→P连续,P为E中的正元锥.利用非紧性测度的估计技巧及凝聚映射的不动点指数理论获得了该边值问题正解的存在性结果.
The existence of positive solutions for the Riemann-Liouville fractional Robin boundary value problem -D α 0 + u(t)=f(t,u(t)), 0≤t≤1,u(0)=u′(1)=θ in an ordered Banach spaces E is discussed, where 1<α≤2,f:[0,1]×P→P is continuous, and P is the cone of positive elements in E .An existence result of positive solutions is obtained by employing a new estimate of noncompactness measure and the fixed point index theory of condensing mapping.
作者
李小龙
张丽丽
Li Xiaolong;Zhang Lili(School of Mathematics and Statistics, Longdong University, Qingyang 745000, China)
出处
《宁夏大学学报(自然科学版)》
CAS
2019年第2期111-115,共5页
Journal of Ningxia University(Natural Science Edition)
基金
国家自然科学基金资助项目(11561038)
甘肃省自然科学基金资助项目(18JR3RM238)
甘肃省高等学校科研基金资助项目(2016B-103)
关键词
分数阶微分方程
ROBIN边值问题
正解
凝聚映射
不动点指数
fractional differential equation
Robin boundary value problem
positive solution
condensing mapping
fixed point index