期刊文献+

有序Banach空间分数阶Robin边值问题的正解 被引量:1

Positive Solutions for Fractional Robin Boundary Value Problems in Ordered Banach Spaces
下载PDF
导出
摘要 讨论了有序Banach空间E中Riemann-Liouville分数阶Robin边值问题:-Dα0+u(t)=f(t,u(t)),0≤t≤1,u(0)=u′(1)=θ正解的存在性,其中1<α≤2,f:[0,1]×P→P连续,P为E中的正元锥.利用非紧性测度的估计技巧及凝聚映射的不动点指数理论获得了该边值问题正解的存在性结果. The existence of positive solutions for the Riemann-Liouville fractional Robin boundary value problem -D α 0 + u(t)=f(t,u(t)), 0≤t≤1,u(0)=u′(1)=θ in an ordered Banach spaces E is discussed, where 1<α≤2,f:[0,1]×P→P is continuous, and P is the cone of positive elements in E .An existence result of positive solutions is obtained by employing a new estimate of noncompactness measure and the fixed point index theory of condensing mapping.
作者 李小龙 张丽丽 Li Xiaolong;Zhang Lili(School of Mathematics and Statistics, Longdong University, Qingyang 745000, China)
出处 《宁夏大学学报(自然科学版)》 CAS 2019年第2期111-115,共5页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(11561038) 甘肃省自然科学基金资助项目(18JR3RM238) 甘肃省高等学校科研基金资助项目(2016B-103)
关键词 分数阶微分方程 ROBIN边值问题 正解 凝聚映射 不动点指数 fractional differential equation Robin boundary value problem positive solution condensing mapping fixed point index
  • 相关文献

参考文献2

二级参考文献12

  • 1Pazy A., Semigroups of linear operators and applications to partial differential equatioins, Berlin: Springer-Verlag, 1983.
  • 2Teman R., Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed, New York: Springer-Verlag, 1997.
  • 3Lakshmikantham V., Leela S., Nonlinear differential equations in abstact spaces, New York: Pergamon Press,1981.
  • 4Li Y. X., On the exponetail stability for abstract strongly damped wave equations, Chinese Ann. Math.,1997, 18A(3): 299-306 (in Chinese).
  • 5Li Y. X., The positive solutions of abstract semilinear evolution equations and their applications, Acta Mathematica Sinica, Chinese Series, 1996, 39(5): 666-672.
  • 6Sun J. X., Some new discrimination method for sequentially compactness in Banach spaces and applications,Chinese Ann. Math., 1990, 11A(4): 407-412 (in Chinese).
  • 7Guo D. J., Nonlinear functional analysis, Jinan: Shandong Science and Technology Press, 1985 (in Chinese).
  • 8Guo D. J., Sun J. X., Ordinary differential equations in abstract spaces, Jinan: Shandong Science and Technology, 1989 (in Chinese).
  • 9Heinz H. R., On the behaviour of measure of noncompactness with respect to differention and integration of vector-valued functions, Nonlinear Anal., 1983, 7: 1351-1371.
  • 10Zhou H. X., Wang L. W., The theory of linear operators semigroups and applications, Jinan: Shandong Science and Technology Press, 1994 (in Chinese).

共引文献87

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部