期刊文献+

钢轨扣件检测技术研究 被引量:10

Rail Fastener Inspection Technology
下载PDF
导出
摘要 轨道交通的飞速发展对轨道线路各组成部分的可靠性检测提出了更高要求,依靠人工手持设备检测存在某些弊端,因此迫切需要依靠计算机图像处理和深度学习等技术实现轨道线路的自动化检测。介绍一种基于图像处理的钢轨扣件状态分类方法,该方法通过对扣件图像的二值化处理,根据其水平方向和垂直方向上的投影特点对扣件部分进行分割,随后提取其局部二值模式(LBP)特征并用支持向量机(SVM)进行分类。同时,探讨一种基于深度学习的扣件图像分类识别方法,采用卷积神经网络VGG16架构,该方法中扣件区域的特征提取可由网络自动完成,不仅节省了时间,而且识别精度和适用性也得到明显提升。 The rapid development of rail transit has put forward higher requirements for the reliability test of various track components. The manual handheld inspection devices have some drawbacks. Therefore, it is urgent to rely on computer image processing and deep learning to realize automatic inspection of tracks. A classification method of rail fastener based on image processing is introduced. The method uses binary processing of fastener images to segment the fastener part according to its horizontal and vertical projection characteristics, then extracts the local binary pattern (LBP) feature and classifies it with support vector machine (SVM). At the same time, a deep learning based fastener image classification and recognition method is discussed. The convolution neural network VGG16 architecture is adopted. The feature extraction of fastener area can be automatically completed by the network, which not only saves time, but also improves the recognition accuracy and applicability.
作者 林菲 杨子明 李永光 吴宽 崔霆锐 LIN Fei;YANG Ziming;LI Yongguang;WU Kuan;CUI Tingrui(Beijing Shengzhou Tongzheng S&T Co Ltd,Beijing 100083,China;Beijing Jiaotong University,Beijing 100044,China;Beijing Subway,Beijing 100088,China)
出处 《中国铁路》 2019年第6期103-110,共8页 China Railway
基金 国家重点研发计划项目(2016YFB1200402)
关键词 钢轨扣件检测 状态分类 图像处理 深度学习 VGG16 rail fastening inspection status classification image processing deep learning VGG16
  • 相关文献

参考文献3

二级参考文献17

  • 1SINGH M,SINGH S,JAISWAIL. Autonomous Rail Track Inspection Using Vision Based System[A].Alexandria:IEEE Corference Publications,2006.56-59.
  • 2SHOLL H,AMMAR R,GREENSHIELDS I. Application of Computing Analysis to Real-Time Railroad Track Inspection[A].Budapest:IEEE Conference Publications,2006.1-6.
  • 3柴雪松;朱锦堂;马辉.青藏铁路高原巡检车的研究[A]北京:中国科学技术出版社,2005119-126.
  • 4KHANDOGIN I,KUMMERT A,MAIWALD D. Automatic Damage Detection for Railroad Tracks by the Analysis of Video Images[A].San Diego:IEEE Corference Publications,1997.1130-1134.
  • 5MARINO F,DISTANTE A,MAZZEO P L. A Real Time Visual Inspection System for Railway Maintenance:Automatic Hexagonal Headed Bolts Detection[J].IEEE Transactions on Systems Man and Cybernetics-Part C:Applications and Reviews,2007,(03):418-428.
  • 6SIRIL Yella,MARK Dougherty,NARENDRAK Gupta. Condition Monitoring of Wooden Railway Sleepers[J].Transportation Research Part C:Emerging Technologies,2009,(01):38-55.
  • 7赵晓明.CRH3型动车组受电弓故障分析及改进措施[J].机车电传动,2009(1):74-75. 被引量:7
  • 8任盛伟,李清勇,许贵阳,韩强,罗四维,冯其波.鲁棒实时钢轨表面擦伤检测算法研究[J].中国铁道科学,2011,32(1):25-29. 被引量:26
  • 9任世光.新型滑板磨耗检测及自动降弓装置[J].铁道运营技术,2000,0(4):139-141. 被引量:18
  • 10王凌,张冰,陈锡爱.基于计算机视觉的钢轨扣件螺母缺失检测系统[J].计算机工程与设计,2011,32(12):4147-4150. 被引量:23

共引文献130

同被引文献108

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部