期刊文献+

基于预测的智能电能表数据简化的轻量级框架 被引量:1

Research on lightweight framework for data simplification of smart meter based on prediction
下载PDF
导出
摘要 在高级计量设施(AMI)中,为了最大限度减少智能电能表的数据传输量和数据简化,提出一个基于预测的轻量级框架。首先,建立决策树以找到预测方法和用电数据统计特征之间的关系;然后,分析用电数据的时间序列以提取统计特征;最后,为了增加框架对智能电能表不断变化的数据模式的自适应能力,采用监督式学习方案实时切换到最适合当前数据模式的预测方法。从数据集中提取1年中10个用户的用电数据,每个用户采集的总记录数为17600个。实验结果表明,所提框架可以实现较高的数据简化准确度(DRA)和数据简化率(DRP),其中,DRA最高为96.7%,DRP最高为98.6%。 In advanced metering infrastructure (AMI), in order to minimize data transmission and data simplification of smart meters, a lightweight framework based on prediction is proposed in this paper. Firstly, a decision tree is established to find the relationship between the forecasting method and the statistical characteristics of electricity consumption data. Then, the time series of electricity consumption data is analyzed to extract the statistical characteristics. Finally, in order to increase the adaptive ability of the framework to the changing data modes of smart meters, a supervised learning scheme is adopted to switch to the forecasting method which is most suitable for the current data modes in real time. The electricity consumption data of ten users in one year are extracted from the data set. The total number of records collected by each user is 17 600. The experimental results show that the proposed framework can achieve high data simplification accuracy (DRA) and data simplification rate (DRP), with the highest DRA of 96.7% and DRP of 98.6%.
作者 王珺 李德伟 薛红 武珺 Wang Jun;Li Dewei;Xue Hong;Wu Jun(Center of Measurement,State Grid Liaoning Electric Power Co. ,Ltd. ,Shenyang 110168,China)
出处 《电测与仪表》 北大核心 2019年第12期146-152,共7页 Electrical Measurement & Instrumentation
关键词 高级计量设施 智能电能表 数据简化 统计特征 advanced metering infrastructure smart meters data simplification statistical characteristics
  • 相关文献

参考文献7

二级参考文献56

  • 1巨汉基,郭丽娟,刘延泉,易忠林,袁瑞铭,田海亭,韩迪.基于元器件应力法的智能电能表可靠性研究与应用[J].电测与仪表,2013,50(S1):7-11. 被引量:20
  • 2黄超,朱扬勇.基于ARMA模型的联机时间序列数据分割算法[J].模式识别与人工智能,2005,18(2):129-134. 被引量:4
  • 3许仪勋,程浩忠,葛乃成,张伟政.谐波对无功电能表计量特性的影响[J].电网技术,2005,29(16):56-60. 被引量:23
  • 4项亮.推荐系统实战[M].北京:人民邮电出版社,2012.
  • 5Han Hongke, Qi Linhai. Application and research of multidi- mensional data analysis in power quality [ C ]//Proc of ICC- DA. Qinhuangdao : [ s. n. ] ,2010.
  • 6Basu M, Basu B. Analysis of power quality (PQ) signals by continuous wavelet transform [ C ]//Proc of power electronics specialists conference. Orlando, FL: IEEE ,2007:2614-2618.
  • 7Srinivasan D,Ng W S,Liew A C. Neural-network-based sig- nature recognition for harmonic source identification [ J ]. IEEE trans on power delivery ,2006,21 ( 1 ) :398-405.
  • 8Yah Shaojin,Peng Yonging,Guo Guang. Neureid BP type mo- del applied to the study of monthly rainfall forecasting [ J ]. AAS,1995,12(3) :336-342.
  • 9Ricardo Baeza-Yates, Berthier Ribeiro-Neto.现代信息检索[M].2版.黄萱菁,张奇,邱锡鹏译.北京:机械工业出版社,2012:52-55.
  • 10林良益.基于Java语言开发的轻量级的中文分词工具包[EB/OL].(2015-01-21).http://git.oschina.net/wltea/IK-Analyzer-2012FF/tree/master.

共引文献315

同被引文献15

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部