期刊文献+

基于Fisher+Fuzzy算法提高SSVEP脑电信号分类

Based on Hybrid Fisher and Fuzzy Algorithms to Improve Classification Accuracy of EEG-Based SSVEP Brain Signals
下载PDF
导出
摘要 为了提高脑-机接口(Brain-Computer Interface,BCI)系统中基于稳态视觉诱发电位(Steady-state Visual Evoked Potentials,SSVEP)信号的分类准确率,提出了一种新的基于Fisher+Fuzzy的分类算法。该算法首先对提取的脑电特征利用Fisher算法得到最佳投影方向和阈值,然后对样本点到最佳超投影面的距离d进行模糊化,再通过模糊推理确定分类结果。该分类算法改善了在SSVEP分类中使用单一Fisher分类器难以对多分类问题中处于歧义区的样本进行有效分类的问题。结果显示在SSVEP的三、四、五分类中,Fisher+Fuzzy分类器取得了94.72%,92.18%,86.08%的平均分类准确率,高于单一Fisher分类器90.07%,80.60%,74.42%的平均准确率,对具有较低可分性的数据集进行分类时准确率显著提高。 In order to improve the classification accuracy of electroencephalographic based on the steady-state visual evoked potential(SSVEP) in brain computer interface(BCI), a new classification algorithm combining Fisher and Fuzzy is proposed in this paper. First, the algorithm uses Fisher to obtain the optimal projection direction and the threshold value for the EEG signals. Second, calculate the distance d and fuzzy it. Finally, the classification result is obtained by fuzzification and defuzzification process. The classification algorithm overcomes the shortcoming that the samples in the ambiguous area cannot be accurately classified by using a single Fisher classifier in SSVEP for multiple classification problems. In the three, four and five-classification based on the SSVEP, the classification algorithm proposed in this paper has achieved 94.72 %, 92.18 % and86.08% average classification accuracy that are higher than using a single Fisher classifier achieved 90.07 %,80.60% and 74.42%. Faced with the low separability data set, the algorithm can significantly improve the classification accuracy.
作者 杜秀兰 张进 毛晓前 张凯莉 李伟 DU Xiu-lan;ZHANG Jin;MAO Xiao-qian;ZHANG Kai-li;LI Wei(School of Electrical Engineering and Automation,Tianjin University,Tianjin 300072,China;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Department of Computer & Electrical Engineer and Computer Science,California State University Bekersfield,California CA 93311,USA)
出处 《控制工程》 CSCD 北大核心 2019年第6期1060-1067,共8页 Control Engineering of China
基金 国家自然科学基金资助项目(61473207) 中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC005)
关键词 脑-机接口 稳态视觉诱发电位 FISHER FUZZY Brain-computer interface steady-state visual evoked potential Fisher Fuzzy
  • 相关文献

参考文献4

二级参考文献151

  • 1王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 2杨兴明,丁学明,张培仁,赵鹏.两轮移动式倒立摆的运动控制[J].合肥工业大学学报(自然科学版),2005,28(11):1485-1488. 被引量:16
  • 3Lu D, Mausel P, Brondizio E, et al. Change detection techniques[ J ]. Int. J Remote Sensing. 2004,25 ( 12 ) : 2365-2407.
  • 4Bazi Y, Bruzzone L, Melgani F. An unsupervised approach based on the generalized gaussian model to automatic change detection in multitemporal SAR images [ J ]. IEEE Tram. Geosci. Remote Sere. ,2005,43(4) :874-888.
  • 5Moser G, Serpico S B. Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery[J]. IEEE Tram. Geosci. Remote Sere. ,2006,44 ( 10 ) :2972-2983.
  • 6Francesca B, Lorenzo B. A detail-preserving scale-driven approach to change detection in multitemporal SAR images [J]. IEEE Tram. Geosci. Remote Sere. ,2005,43 (12) : 2963-2972.
  • 7Villasenor D, Fatland D R, Hinzman L D. Change detection on Alaska's north slope using repeat-pass ERS-1 SAR imagery[J]. IEEE Trans. Geosci. Remote Sens. , 1993,31 ( 1 ) :227-236.
  • 8Radke R J, Andra S, A1-Kofahi O, et al. Image change detection algorithms: a systematic survey[J]. IEEE Trans. L P. ,2005,14( 3 ) :294-307.
  • 9Bruzzone L, Prieto D F. Automatic analysis of the difference image for unsupervised change detection [ J ]. IEEE Trans. Geosci. Remote Sens. ,2000,38 ( 3 ) : 1171-1182.
  • 10Pajares G. A Hopfield neural network for image change detection[J]. IEEE Trans. Neural network, 2006,17 (5) : 1250-1264.

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部