摘要
研究了一类单位圆内解析函数系数的二阶线性微分方程解的性质,减弱了系数特征函数的条件,得到了解的超级范围的相同估计;在此基础上,改进了系数条件,得到了解的超级的精确值;并进一步给出了一个常数控制的系数特征函数的新条件类型,得到了解的超级精确值的估计;在上述条件下,还得到了解及其一阶、二阶导数的不动点的精确估计.以上结果改进了曹廷彬和仪洪勋、Benharrat Belaidi的结果.
Second-order linear-differential-equation solutions for one type of analytic-function coefficients in unit-disc are investigated.Conditions of coefficient characteristic functions are extended,same estimates of solution hyper-order range are obtained.The coefficients are improved,hyper-order precise values of solution are obtained.Further,new condition types of one-constant-controlled coefficient characteristic functions are given,hyper-order precise-value estimates of solution are obtained.Under the above conditions,both the solutions,and precise-estimated fixed-points of their 1st and 2nd derivatives are obtained.Our results are a significant improvement over those by Cao Tingbin,Yi Hongxun and Benharrat Belaidi.
作者
陈玉
邓冠铁
CHEN Yu;DENG Guantie(School of Mathematical Sciences,Laboratory of Mathematics and Complex Systems of Ministry of Education,Beijing Normal University,100875,Beijing,China;School of Mathematics and Informatics,Jiangxi Normal University,330022,Nanchang,Jiangxi,China)
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第3期299-308,共10页
Journal of Beijing Normal University(Natural Science)
基金
国家自然科学基金资助项目(11271045,11561031)
关键词
线性微分方程
单位圆
解析函数
不动点
超级
linear differential equation
unit disc
analytic functions
fixed points
hyper order