期刊文献+

Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor

Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor
原文传递
导出
摘要 Ternary nanocomposites of CuxZnySnzS(x+y+z)are considered as an emerging potential candidate as electrode materials for energy storage devices due to the considerable interlayer spaces and tunnels in its crystal structures with excellent conducting ability.Recently,this nanocomposite used as anode material for Li-ion battery has been reported,but there is lim让ed research on让s application in supercapacitors which is considered a complementary energy storage device to battery.In this work,flower-like Cu5Sn2S7/ZnS and pristine Cu5Sn2S7 nanocomposite were prepared via a facile hydrothermal method.The electrochemical tests showed that the Cu5Sn2S7/ZnS nanocomposite exhibited better performance than pristine Cu5Zn2S7,suggesting that the existence of ZnS could significantly enhance the electrochemical performance of Cu5Sn2S7,with the good capacitance of 200 F/g at the current density of 1 A/g.Furthermore 170 F/g was obtained at the large current density of 10 A/g.Supercapacitors demonstrated energy density of 11.08 Wh/kg with power density 461 W/kg or 9.67 Wh/kg at power density of 4615 W/kg. Ternary nanocomposites of CuxZnySnzS(x+y+z)are considered as an emerging potential candidate as electrode materials for energy storage devices due to the considerable interlayer spaces and tunnels in its crystal structures with excellent conducting ability. Recently, this nanocomposite used as anode material for Li-ion battery has been reported, but there is limited research on its application in supercapacitors which is considered a complementary energy storage device to battery. In this work,flower-like Cu5Sn2S7/ZnS and pristine Cu5Sn2S7 nanocomposite were prepared via a facile hydrothermal method. The electrochemical tests showed that the Cu5Sn2S7/ZnS nanocomposite exhibited better performance than pristine Cu5Zn2S7, suggesting that the existence of ZnS could significantly enhance the electrochemical performance of Cu5Sn2S7, with the good capacitance of 200 F/g at the current density of 1 A/g. Furthermore 170 F/g was obtained at the large current density of 10 A/g. Supercapacitors demonstrated energy density of 11.08 Wh/kg with power density 461 W/kg or 9.67 Wh/kg at power density of 4615 W/kg.
机构地区 School of Chemistry
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第5期1115-1120,共6页 中国化学快报(英文版)
基金 the support via Postgraduate Research Award of Queensland University of Technology(QUTPRA)
关键词 Energy storage SUPERCAPACITORS FLOWER-LIKE NANOCOMPOSITE Cu5Sn2S7/ZnS Metal SULFIDE Energy storage Supercapacitors Flower-like nanocomposite Cu5Sn2S7/ZnS Metal sulfide
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部