摘要
本文研究了Hilbert C^*-模上可共轭算子的并联和,推广了矩阵和Hilbert空间上有界线性算子的一些相关结果.通过举例说明:存在一个Hilbert C^*-模H,以及H上的两个可共轭的正算子A和B,使得算子方程A^1/2=(A+B)^1/2X, X∈L(H)无解,其中L(H)为H上的可共轭算子全体.
The parallel sum for adjointable operators on Hilbert C^*-modules is introduced and studied. Some results known for matrices and bounded linear operators on Hilbert spaces are generalized to the case of adjointable operators on Hilbert C^*-modules. It is shown that there exist a Hilbert C^*-module H and two positive operators A, B ∈ L (H) such that the operator equation A1/2=(A + B)^1/2X, X ∈ L (H) has no solution, where L (H) denotes the set of all adjointable operators on H.
作者
罗未
宋传宁
许庆祥
Wei LUO;Chuan Ning;SONG Qing(Department of Mathematics,Shanghai Normal University,Shanghai 200234,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2019年第4期541-552,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11671261)
上海市科委基金资助项目(18590745200)