期刊文献+

基于部位分割的人体再识别方法

Human Re-identification Based on Part Segmentation
下载PDF
导出
摘要 人体再识别是非重叠视域多摄像机视频分析过程中需解决的难点问题。提出一种基于部位分割的人体再识别方法,首先基于深度骨骼点实现人体部位分割,对同一人体多帧图像分割后的所有部位使用评分的策略选择最优帧,将全局颜色特征和HOG特征分配不同的权重,融合特征建立人体目标模型,使用EMD(Earth Move’s Distance)距离度量目标间的相似性。在Kinect REID和BIWI RGBD-ID数据库上实验表明,该算法具有较高的鲁棒性和识别率。 Human re-identification is a difficult problem to solve in process of video analysis of non-overlapping multi-camera surveillance system. A new algorithm of human re-identification is proposed on the basis of human part segmentation. Based on the depth of bone points to achieve the human body segmentation, the optimal key frame is selected by using the scoring strategy for all parts of the same human multi-frame image segmentation;the different weights for the global color feature and the HOG feature are assigned;all the characteristics to establish a human target model are combined;and the EMD(Earth Mover’s Distance) distance is used to determine the similarity between the targets. The effectiveness is validated on Kinect REID and BIWI RGBD-ID datasets which show that the proposed method has strong robustness and higher recognition rate.
作者 姜华 张良 Jiang Hua;Zhang Liang(Tianjin Key Lab of Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2019年第6期1085-1091,共7页 Journal of System Simulation
基金 国家自然科学基金(61179045)
关键词 人体再识别 部位分割 深度信息 颜色特征 HOG特征 person re-identification human segmentation depth information color characteristics HOG characteristics
  • 相关文献

参考文献1

二级参考文献207

  • 1王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 2Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 3Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 4Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 5Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 6Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 7Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 8Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.
  • 9Morris B T, Trivedi M M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1114-1127.
  • 10Aggarwal J K, Ryoo M S. Human activity analysis: A review. ACM Computing Surveys, 2011, 43(3): 16.

共引文献398

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部