期刊文献+

纵向换能器的频率方程 被引量:3

Frequency equations for a longitudinal transducer
下载PDF
导出
摘要 目前应用的纵向换能器频率方程是通过1个未知节点分成2个部分分别描述的,该方程必须借助数学迭代方法计算整体换能器的谐振频率。针对其应用的不便性和对不同截面形状的适应性问题,本文基于一维振动理论和能量法,给出纵向换能器的简化机电等效模型,考虑部件截面参数,通过动能和位能等效关系得出等效元件参数表达式,根据谐振条件经过严格数学推导,给出关于整体换能器频率方程的参数化数学表达式。可应用于部件不等截面以及多种截面形状尺寸的纵向换能器谐振频率和振动节点计算,具有更广泛的适用性,计算结果与有限元方法符合很好。 Currently used frequency equations for a longitudinal transducer are described as two segments from an unknown node,which must employ the mathematical iterative method to calculate the resonant frequency of the entire transducer.Therefore,frequency equations are inconvenient and have adaptability problems on transducers with different cross-sectional shapes.In this study,we obtained the simplified electromechanical equivalent model on the basis of the one-dimensional vibration theory and energy method and deduced the parametric expression of equivalent elements through the equivalent relationship between kinetic and potential energies,considering the parameters of cross sections.Finally,on the basis of the mechanical resonance condition,we derived the parameterized mathematical expression of frequency equations for the entire transducer,which is precisely deduced through the mathematical method.This parameterized mathematical expression can be widely used to calculate the resonant frequency and vibrational node of longitudinal transducers with unequal cross-sectional parts or different cross-sectional shapes and sizes.The calculated results are consistent with those of the finite element method.
作者 莫喜平 刘永平 MO Xiping;LIU Yongping(College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China;Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Acoustic Science and Technology Laboratory,Harbin Engineering University,Harbin 150001,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第7期1245-1250,共6页 Journal of Harbin Engineering University
关键词 纵向换能器 能量法 等效参数 谐振频率 振动节点 有限元方法 longitudinal transducer energy method equivalent parameter resonant frequency vibrational node finite element method
  • 相关文献

参考文献8

二级参考文献51

  • 1刘强,范进良,曹荣.压电/超磁致伸缩混合式宽带纵振换能器的线性数学模型[J].声学与电子工程,2005(1):12-15. 被引量:3
  • 2杨永德,张云电.高效率压电陶瓷超声推挤加工装置研究[J].电子学报,2005,33(11):1988-1991. 被引量:2
  • 3莫喜平,刘永平,崔政,刘慧生,柴勇,吕震涛.宽带宽波束纵向水声换能器研究[J].应用声学,2006,25(5):270-272. 被引量:9
  • 4贺西平,胡静.穿单孔型宽频带换能器[J].声学学报,2007,32(3):221-225. 被引量:7
  • 5Johnson M P. Velocity control and mechanical impedance of single degree of freedom electromechanical vibrators[J]. J. Acoust. Soc. Am., 1988,84(6) : 1994 - 2001.
  • 6Crombrugge M, Thompson W. Optimization of the transmitting characteristics of a Tonpilz-type transducer by proper choice of impedance matching layers [J]. J. Acoust. Soc. Am., 1985,77 (2) :747 - 752.
  • 7Pugin B. Qualitative characterization of ultrasound reactors for heterogeneous sonochemistry[ J ]. Ultrasonics, 1987,25 ( 1 ):49 - 55.
  • 8Beckett M A, et al. Impact of ultrasonic frequency on aqueous sonoluminescence and sonochernistry [J]. J. Phys. Chem. A, 2001,105(15) :3796 - 3802.
  • 9Lin S Y. Effect of electric load impedances on the performance of sandwich piezoelectric transducers[ J]. IEEE Transactions on UFFC,2004,51 (10) :1280- 1286.
  • 10Hasan A B, et al. Factors which determine the tunable frequency range of tunable transducers[J]. J. Acoust. Soc. Am., 1996, 100(2) :840 - 847.

共引文献193

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部