期刊文献+

计算机模拟在不同类型离子电池电极材料中的研究进展 被引量:4

Research Progress of Computer Simulation for Ion Battery Electrode Materials
原文传递
导出
摘要 高能量密度储能装置的锂硫电池和钠离子电池等新型电池体系正在迅速发展。简要概述了锂离子电池、锂硫电池和钠离子电池的正负极材料,着重就第一性原理、分子动力学、蒙特卡罗及有限元方法在电极材料中的研究进展,以及在材料的晶体结构、电子结构、离子的输运过程、材料中的温度和应力分布以及掺杂改性等方面的应用进行了综述,对计算模拟技术在电极材料中的应用前景进行了展望。这些理论研究成果将有助于加深对材料和电池性能之间关系的理解,并对新电池体系材料的设计和研发具有理论指导意义。 Novel battery systems such as lithium-sulfur and sodium-ion batteries have attracted recent attention due to their high-energy density. This review introduced the anode and cathode materials used for lithium-ion batteries, lithium-sulfur batteries and sodium-ion batteries, and represented the applications of computer simulation techniques based on first-principles method, molecular dynamics method, Monte Carlo method and finite element method for electrode materials research (i.e., crystal and electronic structures, transport process of ions, temperature and stress distribution, and doping modification). The simulation results favor to clarify the relationship between materials and battery performance, and provide a theoretical guidance for the design and development of novel battery system materials.
作者 吴苗苗 刘佳昊 王珂欣 魏雪虎 李洺阳 王琪 马向东 刘瑞平 WU Miaomiao;LIU Jiahao;WANG Kexin;WEI Xuehu;LI Mingyang;Wang Qi;MA Xiangdong;LIU Ruiping(Department of Materials Science and Engineering,China University of Mining and Technology (Beijing),Beijing 100083,China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2019年第7期1013-1022,共10页 Journal of The Chinese Ceramic Society
基金 国家重点研发计划(2017YFB0601904) 国家自然科学基金项目(11404395) 中央高校基本科研业务费专项资金(2013QJ01) 国家大学生创新训练项目(C201704589)
关键词 计算模拟 锂离子电池 锂硫电池 钠离子电池 simulation lithium-ion battery lithium-sulfur battery sodium-ion battery
  • 相关文献

参考文献5

二级参考文献116

  • 1顾惠敏,王东来,翟玉春,刘丽影,李德发.LiNiO_2及掺杂化合物的结构与稳定性的第一性原理研究[J].分子科学学报,2007,23(2):99-103. 被引量:8
  • 2KANNO R, TAKEDA Y, ICHIKAWA T, et al. Carbon as negative electrodes in lithium secondary cells [J]. Journal of Power Sources, 1989, 26(3): 535-543.
  • 3MOHRI M, YANAGISAWA N, TAJIMA Y, et al. Rechargeable lithium battery based on pyrolytic carbon as a negative electrode [J]. Journal of Power Sources, 1989, 26(3): 545-551.
  • 4NAZa! G A, PISTOIA G. Lithium batteries: science and technology [M]. New York: Springer, 2003: 113-115.
  • 5AGARWAL R R. Phase changes and diffusivity in the carbon-lithium electrode [J]. Journal of Power Sources, 1989, 25(2): 151-158.
  • 6BHANDAKKAR T K, GAO H. Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses [J]. International Journal of Solids and Structures, 2011, 48(16/17): 2304-2309.
  • 7SONG Y C, LU B, JI X, et al. Diffusion induced stresses in cylindrical lithium-ion batteries: anMytical solutions and design insights [J]. Journal of the Electrochemical Society, 2012, 159(12): A2060-A2068.
  • 8GUYOMARD D, TARASCON J M. Li metal-free rechargeable LiMn204/carbon cells: their under- standing and optimization [J]. Journal of the Electrochemical Society, 1992, 139(4): 937-948.
  • 9LEVI M D, AURBACH D. The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling [J]. Journal of Electroanalytical Chemistry, 1997, 421(1): 79-88.
  • 10Guo Q, SUBRAMANIAN V R, WEIDNER J W, et al. Estimation of diffusion coefficient of lithium in carbon using AC impedance technique [J]. Journal of the Electrochemical Society, 2002, 149(3): A307-A318.

共引文献35

同被引文献23

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部