摘要
在传统负荷预测理论的基础上,提出了基于智能相似日识别及偏差校正的新型短期负荷预测方法。首先构建地市相关因素特征矩阵,通过判断矩阵相关性智能选取负荷相似日,从而实现负荷曲线的一次预测。在此基础上,建立了实时气象偏差校正策略,采用XGBoost算法进行负荷曲线的二次偏差校正,达到短期负荷预测的目标。算例研究表明,该策略能够有效提升短期负荷预测精度,而且具有较好的自适应特性,可以应用于电力系统短期负荷预测实践。
Based on the traditional load forecasting theory,this paper proposes a new short-term load forecasting method based on intelligent similar day recognition and deviation correction.Firstly,the characteristic matrix of prefecture-city and correlation factors is constructed to select the most similar day of load curve through calculating matrix correlation coefficient.On this basis,the real-time meteorological deviation correction strategy which adopts the XGBoost algorithm is established to carry out the secondary deviation correction of the load curve,so as to achieve the goal of short-term load prediction.An example study shows that this strategy can effectively improve accuracy of short-term load forecasting,and also has good adaptive characteristics.Therefore,this method can be applied to the short-term power load forecasting practice.
作者
刘翊枫
周国鹏
刘昕
汪洋
郑宇鹏
邵立政
LIU Yifeng;ZHOU Guopeng;LIU Xin;WANG Yang;ZHENG Yupeng;SHAO Lizheng(State Grid Hubei Electric Power Co.,Ltd.,Wuhan 430077,China;Tsinghua University,Beijing 100084,China;Beijing Tsintergy Technology Co.,Ltd.,Beijing 100080,China)
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2019年第12期138-145,共8页
Power System Protection and Control
基金
国家电网科技项目(52150016006B)“基于分布式潮流控制的输电网柔性交流潮流控制技术研究”~~
关键词
相关因素
特征矩阵
相似日
偏差校正
短期负荷预测
correlation factors
characteristic matrix
similar day
deviation correction
short-term load forecasting