期刊文献+

rLasso正则化Logistic回归模型的估计 被引量:2

Estimation of Logistic Regression Model Based on rLasso Regularization
下载PDF
导出
摘要 文章将rLasso惩罚函数推广到Logistic回归模型,并给出单坐标rLasso惩罚估计问题的解析解,结合坐标下降算法思想,给出线性模型rLasso以及Logistic-rLasso惩罚估计问题的坐标下降求解方法。数值模拟验证所提坐标下降算法的有效性,并说明rLasso惩罚比LASSO类惩罚能选择更为稀疏的模型。 This paper extends rLasso penalty function to Logistic regression model, and proposes an analytical solution to a single coordinate rLasso. The paper also combines with coordinate descent algorithm to give the coordinate descent method of lin ear model rLasso and Logistic-rLasso penalty estimation. Numerical simulations verify the effectiveness of the proposed coordi- nate descent algorithm and indicates that rLasso penalty can choose a more sparse model than Lasso penalty.
作者 周生彬 高妍南 黄叶金 Zhou Shengbin;Gao Yannan;Huang Yejin(School of Mathematical Science, Harbin Normal University, Harbin 150025, China;School of Management, Harbin University of Commerce, Harbin 150025,China;PBC School of Finance, Tsinghua University, Beijing 100083, China)
出处 《统计与决策》 CSSCI 北大核心 2019年第12期22-26,共5页 Statistics & Decision
关键词 rLasso 坐标下降算法 LOGISTIC回归 广义线性模型 Oracle性质 rLasso coordinate descent algorithm Logistic regression generalized linear models Oracle property
  • 相关文献

参考文献2

二级参考文献20

  • 1Berkson J. , 1944, Application of the Logistic Function to Bio-assay [J], Journal of the American Statistical Association, 39 (227): 357-365.
  • 2Breirnan L. , 1996, Heuristics of Instability and Stabilization in Model Selection [J], The An- nals of Statistics, 24 (6): 2350-2383.
  • 3Tibshirani R. , 1996, Regression Shrinkage and Selection Via the Lasso [J], Journal of the Royal Statistical Society Series B (Methodological), 267-288.
  • 4Fan J. , Li R. , 2001, Variable Selection Via Nonconcave Penalized Likelihood and Its Oracle Properties [J], Journal of the American Statistical Association, 96 (456): 1348-1360.
  • 5Lv J. , Fan Y. , 2009, A Unified Approach to Model Selection and Sparse Recovery Using Regu- larized Least Squares [J], The Annals of Statistics, 3498-3528.
  • 6Nikolova M. , 2000, Local Strong Homogeneity of A Regularized Estimator [J], SIAM Journal on Applied Mathematics, 61 (2): 633-658.
  • 7Zhang C. H. , 2010, Nearly Unbiased Variable Selection Under Minimax Concave Penalty [J], The Annals of Statistics, 894-942.
  • 8Shevade S. K. , Keerthi S. S. , 2003, A Simple and Efficient Algorithm for Gene Selection Using Sparse Logistic Regression [J], Bioinformatics, 19 (17): 2246-2253.
  • 9Jiang D. , Huang J. , Zhang Y. , 2013, The Cross-validated AUC for MCP-Logistic Regression with High-dimensional Data [J], Statistical Methods in Medical Research, 22 (5).. 505-518.
  • 10Jiang W. , Zhang C. H. , 2014, Paths Following Algorithm for Penalized Logistic RegressionUsing SCAD and MCP [J], Communications in Statistics-Simulation and Computation, 43 (5): 1064-1077.

共引文献19

同被引文献21

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部