摘要
研究以通勤客流为主的单公交线路发车时刻表优化调整问题.提取公交卡数据利用数据挖掘方法求得公交动态OD,建立累计客流需求-时间函数。分析该函数中的参数随不同发车时刻表而变动的特点,建立乘客抵达公交站时间概率选择模型,使用OD历史数据辨识时间概率选择模型中参数,得到“客流需求-时间”在不同公交发车时刻表下的计算方法。在此基础上建立基于动态需求的单条公交线路发车时刻表调整模型,采用遗传算法优化求解,具体案例表明公交车运行成本和乘客成本都得到降低,该方法的正确性和有效性予以验证。
This paper aims to make a departure timetable optimization adjustment for commuters-based single bus line.The formula of cumulative passenger demand-time function was established,where bus dynamic OD are obtained by us.ing the data mining method and extracted bus card data.The changing characteristics of the function parameters with dif.ferent departure timetables are analyzed.Then the arrival time choice probability model at bus stop or station was estab.lished and the parameters were identified by the OD data.The computing method of cumulative demand for each bus timetable was obtained.An adjusted timetable was determined through the optimization model of departure timetable for single bus line based on dynamic demand.A Genetic Algorithm was adopted in each step of the heuristic approach.The result of a real case indicates that both the bus operation cost and the passenger cost can be declined.Meanwhile,the cor.rectness and effectiveness of the method is verified.
作者
任俊
庞明宝
张宁
REN Jun;PANG Mingbao;ZHANG Ning(School of Civil Engineering and Transportation,Hebei University of Technology,Tianjin 300401,China)
出处
《河北工业大学学报》
CAS
2019年第3期53-59,共7页
Journal of Hebei University of Technology
基金
河北省自然科学基金(E2015202266)
天津市交通运输科技发展计划(2018-36)
关键词
公交卡数据
发车时刻表
累计客流需求-时间函数
时间概率选择模型
遗传算法
bus card data
departure timetable
cumulative passenger demand-time function
time choice probability model
genetic algorithm(GA)