期刊文献+

一类具有双平方根响应函数的状态依赖反馈控制模型

A Predator-prey State Dependent Feedback Control Model with Double Square Root Response Function
下载PDF
导出
摘要 基于微分方程几何理论和非线性动力系统理论,针对"羊群行为"构建一类具有双平方根响应函数的状态依赖反馈控制模型,特别研究了忽略捕食者在捕食过程中的平均耗时因素情形下系统的动力学行为,利用后继函数法分析了阶一周期解的存在性,得到了阶一周期解存在的充分条件,并通过数值模拟进行了验证。 Based on the differential equation geometry theory and nonlinear dynamical system theory,a state-dependent feedback control model of predator-prey with double square root response function is constructed for"herd behavior".The dynamic behavior of the system is studied especially when the average time-consuming factor of predator is neglected.The existence of the order-1 periodic solution is analyzed by using the successor function method.Sufficient conditions for the existence of order-1 periodic solutions are obtained and verified by numerical simulation.
作者 白露 刘琼 陈武大仁 BAI Lu;LIU Qiong;CHEN WU Daren(College of Science,Beibu Gulf University,Qinzhou 535011,China;College of Mathematics and Information Science,Guangxi University,Nanning 530004,China)
出处 《钦州学院学报》 2019年第5期15-20,共6页 Journal of Qinzhou University
基金 广西自然科学基金项目:半连续动力系统之红树林害虫治理的研究(2016GXNSFAA380102)
关键词 双平方根响应函数 半连续动力系统 阶一周期解 后继函数 Double square root response function Semi-continuous dynamic systems Order-1 periodic solution Successor functions
  • 相关文献

参考文献3

二级参考文献22

  • 1张树文,陈兰荪.具有脉冲效应和综合害虫控制的捕食系统[J].系统科学与数学,2005,25(3):264-275. 被引量:30
  • 2Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1976.
  • 3Clark C W. Bioeconomic Modeling and Resource Management [C]//Levin S A, Hallam T G, Grose L J eds. Applied Mathematical Ecology, New York : Springer-Verlag, 1989.
  • 4Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1990.
  • 5GohB S. Managenment and Analysis of Biological Populations[M]. Amsterlan:Elsevier Scientific Publishing Company, 1980.
  • 6Bonotto E M. Flows of Characteristic in Impulsive Semidynamical Systems [J]. J. Math Anal App1,2007 ,332 :81-96.
  • 7Bonotto E M. LaSalle' s Theorems in Impulsive Semidynamical Systems[J]. Cadernos de Matem Atica,2008,9:157-168.
  • 8Bonotto E M, Federson M. Limit Sets and the Poincar6-Bendixson Theorem in Impulsive Semidynamical Systems [J]. J Differential Equations ,2008,244:2334-2349.
  • 9Bonotto E M, Federson M. Poisson Stability for Impulsive Semidynamical Systems [J]. Nonlinear Analysis,2009,71 : 148-6156.
  • 10Bonotto E M, Federson M. Topological Conjugation and Asymptotic Stability in Impulsive Semidynamical Systems [J]. J Math Anal App1,2007,326:869-881.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部