期刊文献+

改进猫群算法求解置换流水车间调度问题 被引量:7

Improved cat swarm optimization for permutation flow shop scheduling problem
下载PDF
导出
摘要 标准猫群算法(CSO)在求解最小化最大完工时间的置换流水车间调度问题(PFSP)时收敛速度较慢,同时,当问题规模变大时容易出现“维数灾难”。为加快寻优速度,同时避免“维数灾难”,提出了一种基于分布估计算法的改进猫群算法(EDA-CSO)。以猫群算法为框架,嵌入分布估计算法,在搜寻模式下,利用概率矩阵挖掘解序列中的优秀基因链组合区块,使用猫群算法中的跟踪模式更新猫的速度和位置,从而更新优秀解序列产生子群体。最后,通过对Carlier和Reeves标准例题集的仿真测试和结果比较,验证了该算法良好的鲁棒性和全局搜索能力。 The standard cat swarm optimization(CSO)has a slow convergence rate in solving the permutation flow shop scheduling problem(PFSP)to minimize the maximum completion time.Meanwhile,the"dimension disaster"is prone to occur when the scale of the problem is large.To speed up the optimization and avoid the"dimension disaster,"a CSO algorithm based on the estimation of distribution algorithms is proposed in this paper.Based on the cat swarm algorithm,the distribution estimation algorithm is embedded.In the search mode,the probability matrix is used to mine the excellent gene chain combination blocks in the solution sequence,and the tracking mode in the cat swarm algorithm is used to update the speed and position of the cat,thus updating the excellent solution sequence to generate a subpopulation.Finally,through the simulation test and comparison result of Carlier and Reeves standard example set,the good robustness and global searching ability of the algorithm are verified.
作者 裴小兵 于秀燕 PEI Xiaobing;YU Xiuyan(School of Management,Tianjin University of Technology,Tianjin 300384,China)
出处 《智能系统学报》 CSCD 北大核心 2019年第4期769-778,共10页 CAAI Transactions on Intelligent Systems
基金 国家创新方法工作专项项目(2017IM010800)
关键词 置换流水车间调度 猫群算法 分布估计算法 搜寻模式 概率矩阵 组合区块 跟踪模式 优秀解序列 permutation flow shop scheduling problem cat swarm optimization estimation of distribution algorithm search mode probability matrix combination block tracking mode excellent solution sequence
  • 相关文献

参考文献4

二级参考文献46

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 2伊华伟,张秋余.求解置换Flow-shop调度问题的改进遗传算法[J].计算机工程与应用,2007,43(22):41-43. 被引量:4
  • 3KHAN N, GOLDBERG D E, PELIKAN M. Multi-objective Bayesian optimization algorithm [ R ]. Urbana, USA : Uni- versity of Illinois at Urbana-Champaign, 2002.
  • 4OKABE T, JIN Y, SENDHOFF B, et al. Voronoi-based es- timation of distribution algorithm for multi-objective optimi- zation [ C ]//Proceedings of the 2004 Congress on Evolution- ary Computation. Piscataway, USA, 2004: 1594-1601.
  • 5SASTRY K, PELIKAN M, GOLDBERG D E. Decompos- able problems, niching, and scalability of muhiobjective es- timation of distribution algorithms[ R]. Urbana, USA : Uni- versity of Illinois at Urbana-Champaign, 2005.
  • 6ZHANG Qingfu, ZHOU Aimin, JIN Yaochu. RM-MEDA : a regularity model-based multiobjective estimation of distribu- tion algorithm[ J]. IEEE Transactions on Evolutionary Com- putation, 2008, 12( 1 ) : 41-63.
  • 7STORN R, PRICE K. Differential evolution--a simple and efficien! adaptive scheme for global optimization over contin- uous spaces[ J ]. Journal of Global Optimization, 1997, 11 (4) : 341-359.
  • 8ROBIC T, FILIPIC B. DEMO: differential evolution for multiobjective optimization[ C ]//Proceedings of the 3rd In- ternational Conference on Evolutionary Multi-Criterion Opti- mization. Berlin, Germany: Springer, 2005: 520-533.
  • 9ZHAO Mengling, LIU Ruochen, l,I Wenfeng, et al. Multi-ojective optimization based differential evolution constrained optimization algorithm [ C ]//Proceedings of 2010 Second WRI Global Congress on Intelligent Sys- tems. Piseataway, USA, 2010: 320-326.
  • 10李丽蓉,高卫峰.混合差分进化算法[J].计算机工程与设汁,2012,33(6):2446-2450.

共引文献46

同被引文献39

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部