期刊文献+

连续体重建模型应力集中消除的方法

A stress concentration elimination method in continuum reconstruction model
下载PDF
导出
摘要 在进行连续体拓扑优化时,若根据点云数据重建模型常有应力集中的现象。在分析结构内单元应力集中程度的基础上,基于单元间相对位置关系得到应力集中程度的分布情况,提取出应力集中区域。采用计算机辅助优化(CAO)方法的思想,将应力分布等效为温度场,根据单元的热膨胀效应在过载区域增加材料,对应力集中区域进行局部优化。优化实例表明,在寻找出结构的应力集中区域后,每次优化都会使局部结构趋于平缓,有效降低了优化区域的应力集中程度,最终可得到边缘光滑、无应力集中的结构。 As the topology optimization of continuum, there is stress concentration phenomenon in model reconstructed from the point cloud. By analyzing the stress concentration of structural units and obtaining the distribution of stress concentration based on relative positional relationship between units, got the stress concentration area. Based on the Computer-Aided Optimization (CAO) method ,the stress distribution was equivalent to the temperature field, and the material was added to the overload region according to the thermal expansion effect of the units, which optimized the local stress concentration area. The example shows that the local structure is flattened by each optimization after the stress concentration region of the structure is found, which effectively reduces the stress concentration in the optimized area. The resulting structure is smooth and has no stress concentration.
作者 赵炯 张日成 周奇才 熊肖磊 吴青龙 Zhao Jiong;Zhang Richeng;Zhou Qicai;Xiong Xiaolei;Wu Qinglong(School of Mechanical Engineering,Tongji Univercity,Shanghai 201804,China;Tongji Zhejiang College,Jiaxing 314051 ,Zhejiang,China)
出处 《现代制造工程》 CSCD 北大核心 2019年第6期17-22,共6页 Modern Manufacturing Engineering
基金 国家自然科学基金项目(51375345)
关键词 应力集中 局部应力优化 计算机辅助优化(CAO)方法 stress concentration local stress optimization Computer-Aided Optimization ( CAO) method
  • 相关文献

参考文献3

二级参考文献13

  • 1刘波,曹晓东.平板中心圆孔边应力集中的有限元分析[J].石油化工设备技术,2004,25(5):20-21. 被引量:7
  • 2王书亭,左孔天.基于均匀化理论的拓扑优化算法研究[J].华中科技大学学报(自然科学版),2004,32(10):25-27. 被引量:8
  • 3朱晓东,覃启东.基于ANSYS平台含圆孔薄板的应力集中分析[J].苏州大学学报(工科版),2004,24(5):51-53. 被引量:14
  • 4罗震,陈立平,黄玉盈,张云清.连续体结构的拓扑优化设计[J].力学进展,2004,34(4):463-476. 被引量:154
  • 5Xie Y M,Steven G P. Evolutionary structural optimization[M] .Berlin: Springer-Verlag, 1997.
  • 6LI Q, Steven G P,Xie Y M. A simple checkerboard suppression algorithm for evolutionary structural optimization[J] . Struct Multidisc Optim, 2001,22 : 230-239.
  • 7Diaz A, Sigmund O. Checkerboard patterns in layout optimization[J]. Struct Optim,1995,10:40-50.
  • 8徐芝纶.弹性力学简明教程:第2版[M].北京:高等教育出版社,1993.
  • 9X. Huang,Y. M. Xie. A new look at ESO and BESO optimization methods[J] 2008,Structural and Multidisciplinary Optimization(1):89~92
  • 10R. B. Haber,C. S. Jog,M. P. Bends?e. A new approach to variable-topology shape design using a constraint on perimeter[J] 1996,Structural Optimization(1-2):1~12

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部