摘要
讨论了与广义Euler函数φ2(n)有关的两个方程φ2(x-φ2(x))=2与φ2(φ2(x-φ2(x)))=2的可解性,利用初等的方法给出了方程φ2(x-φ2(x))=2所有的5个整数解,方程φ2(φ2(x-φ2(x)))=2所有的26个整数解.
The solvabilities of two equations φ2(x-φ2(x))=2 and φ2(φ2(x-φ2(x)))=2 on generalized Euler function φ2(n)were discussed.The equation φ2(x-φ2(x))=2 has 5 solutions and the equation φ2(φ2(x-φ2(x)))=2 has 26 solutions,which were given based on elementary methods.
作者
张四保
阿克木·优力达西
ZHANG Si-bao;Akim·Yoldax(School of Mathematics and Statistics,Kashi University,Kashi 844008,China)
出处
《东北师大学报(自然科学版)》
CAS
北大核心
2019年第2期7-12,共6页
Journal of Northeast Normal University(Natural Science Edition)
基金
新疆维吾尔自治区自然科学基金资助项目(2017D01A13)