期刊文献+

GWO-LSSVM耦合模型在变形预测中的应用

Application of GWO-LSSVM Coupling Model in Deformation Prediction
下载PDF
导出
摘要 针对原始监测数据中包含随机噪声,导致预测结果不理想,以及单一预测模型的局限性,本文提出一种基于经验模态分解(EMD)与灰狼算法(GWO)优化最小二乘支持向量机(LSSVM)耦合的EMDGWO-LSSVM变形预测新模型。通过工程实例表明,新模型与LSSVM、GWO-LSSVM模型进行对比,预测精度最高,稳定性最好,能够为变形预测提供一定的参考价值。 In view of the random noise in the original monitoring data, the prediction results are not satisfactory and the limitation of a single prediction model, this paper proposes an empirical modal decomposition (EMD) and grey wolf algorithm (GWO) optimized least squares support vector machine (LSSVM) coupled EMD-GWO-LSSVM deformation prediction new model. The engineering example shows that the new model is compared with the LSSVM and GWO-LSSVM models. The prediction accuracy is the highest and the stability is the best, which can provide some reference value for deformation prediction.
作者 朱旭辉 魏自来 ZHU Xuhui;WEI Zilai(Shaoguan Surveying and Mapping Research Institute, Shaoguan Guangdong 512000, China)
出处 《北京测绘》 2019年第7期835-838,共4页 Beijing Surveying and Mapping
关键词 经验模态分解 变形预测 灰狼优化 最小二乘支持向量机 empirical mode decomposition deformation prediction grey wolf optimization least squares support vector machine
  • 相关文献

参考文献8

二级参考文献66

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部