期刊文献+

基于深度学习的电力系统暂态稳定性评估方法研究 被引量:3

Research on Transient State Qualitative Estimating Method of the Power System Based on Depth Study
下载PDF
导出
摘要 可再生能源比例增加对电力系统安全稳定运行带来更加严峻的挑战。本文围绕基于深度学习的电力系统暂态稳定性评估问题进行探索研究,应用深层卷积神经网络挖掘电力系统暂态运行数据与稳定性之间的关联关系,实现了基于暂态运行特征数据集的电力系统暂态稳定性快速评估,研究工作为电力系统暂态稳定性安全评估提供了新视角。通过算例验证,组合模型可实现电力系统暂态稳定性快速准确的评估,与其他算法相比,本文所建立的组合模型在电力系统暂态稳定性评估准确性方面更具优势。 The paper carriesout discussion and study on transient state qualitative estimating problem of power systems. Apply relevant relations between the digging power system's tranisent operation data of deep convolution nerve net and stability, realize quick estimation of the power system transient stability based on transient operation characteristic data assemble. The quick and accurate estimation for the power system tran sient stability is realized by example and integrated meodel. Comparing with other algorithm, the integrated model set up in the puper has more advantage in accurate aspect of the power system transient stability.
作者 毛新宇 王海新 许伯阳 黄纪佳 李中凯 庞博 MAO Xin-yu;WANG Hai-xin;XU Bo-yang;HUANG Ji-jia;LI Zhong-kai;PANG Bo(Anhui Huadian Suzhou Dower Co. Ltd. ,Suzhou ,221116, China;College of Electrical Engineering,Northeast Electric Power University,Jilin 132012 ,China;Shezhen Power Supply Bureau Co. Ltd.,Shenzhen 518001 , China;State Grid jiujiang Power Branch Company of Jiangxi Electric PowerCo. Ltd. ,Jiujiang 332000,China;State Grid Linxi Power Supply Company,Linyi 276000,China;State Grid Baicheng Power Supply Company,Baicheng 137000, China)
出处 《电气开关》 2019年第3期46-54,共9页 Electric Switchgear
关键词 电力系统 暂态稳定 卷积神经网络 组合评估模型 power system transient stability convolution never net intergated estimation pattern
  • 相关文献

参考文献7

二级参考文献85

  • 1陶兰,江缉光,肖达川.人工神经网络在电力系统暂态安全分析中的应用研究[J].清华大学学报(自然科学版),1994,34(4):62-68. 被引量:5
  • 2唐巍,陈学允.应用人工神经网络进行电力系统暂态稳定性分析的新方法[J].电力系统自动化,1996,20(11):23-26. 被引量:12
  • 3唐巍,陈学允.BP算法应用于电力系统暂态稳定分析的新策略[J].电力系统自动化,1997,21(3):47-50. 被引量:10
  • 4Pavella M, Murthy P G. Transient stability of power systems[M]. New York: John Wiley & Sons, 1994.
  • 5Sobajic D J, Pao Y H. Artificial neural-net based dynamic security assessment for electric power systems [J]. IEEE Trans. on Power Systems, 1989,4 (1): 220-228.
  • 6Pao Y H, Sobajic D J. Combined use of unsupervised and supervised learning for dynamic security assessment[J].IEEE Trans. on Power Systems, 1992,7 (2): 878-884.
  • 7Huang K, Lam D, Yee H. Neural-net based critical clearing time prediction in power system transient stability analysis[C]. Proc. IEE 2nd Int. Conf. on Advances in Power System Control, Operation and Management (APSCOM93), Hong Kong, 1993.679-683.
  • 8Hobson E, Allen G N. Effectiveness of artificial neural networks for first swing stability determination of practical systems[J].IEEE Trans. Power Systems, 1994,9(2): 1062-1068.
  • 9Marpaka D R, Bodruzzaman M, Devgan S S, et ai. Neural network based transient stability assessment of eleclric power systems[J]. Eleclric Power Systems Research, 1994,30 (3): 251-256.
  • 10Lau B S, Wong K P. Transient stability assessment: an artificial neural network approach [C]. Proc. 1995 IEEE Int. Conf. on Neural Networks, 2, Perth, Australia,1995.702-707.

共引文献1370

同被引文献25

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部