摘要
利用初等方法证明了:对任意的正整数n,丢番图方程(60n)^x+(91n)^y=(109n)^z仅有正整数解(x,y,z)=(2,2,2).
By elementary method, it is proved that for any positive integer n the Diophantine equation (60n)^x+(91n)^y=(109n)^z has no solution in positive integers other than (x,y,z)=(2,2,2).
作者
崔保军
CUI Bao-jun(Department of Mathematics, Gansu Normal University for Nationalities, Hezuo 747000, China)
出处
《广西师范学院学报(自然科学版)》
2019年第2期43-46,共4页
Journal of Guangxi Teachers Education University(Natural Science Edition)