期刊文献+

关于丢番图方程(60n)~x+(91n)~y=(109n)~z 被引量:5

The Diophantine Equation (60n)~x+(91n)~y=(109n)~z
下载PDF
导出
摘要 利用初等方法证明了:对任意的正整数n,丢番图方程(60n)^x+(91n)^y=(109n)^z仅有正整数解(x,y,z)=(2,2,2). By elementary method, it is proved that for any positive integer n the Diophantine equation (60n)^x+(91n)^y=(109n)^z has no solution in positive integers other than (x,y,z)=(2,2,2).
作者 崔保军 CUI Bao-jun(Department of Mathematics, Gansu Normal University for Nationalities, Hezuo 747000, China)
出处 《广西师范学院学报(自然科学版)》 2019年第2期43-46,共4页 Journal of Guangxi Teachers Education University(Natural Science Edition)
关键词 丢番图方程 JESMANOWICZ猜想 初等方法 同余 Diophantine equation Jesmanowicz conjecture elementary method congruence
  • 相关文献

参考文献1

二级参考文献8

  • 1Sierpinski W.On the equation 3^x+4^y=5^z[J].Wiadom Mat,1955,56(1):194-195.
  • 2Jesmanowicz L.Several remarks on Pythagorean numbers[J].Wiadom Mat,1955,56(1):196-202.
  • 3Cao Zhenfu.A note on the Diophantine equation a^x+b^y=c^z[J].Acta Arith,1999,91(1):85-93.
  • 4Le Maohua.A note on Jesmanowicz' conjecture[J].Colloq Math,1995,69:47-51.
  • 5Le Maohua.On Jesmanowicz' conjecture concerning Pythagorean numbers[J].Proc Japan Acad Ser A Math Sci,1996,72:97-98.
  • 6Takakuwa K.A remark on Jesmanowicz' conjecture[J].Proc Japan Acad Ser A Math Sci,1996,72:109-110.
  • 7Deng Moujie,Cohen G L.On the conjecture of Jesmanowicz concerning Pythagorean triples[J].Bull Austral Math Soc,1998,57:515-524.
  • 8Scott R.On the equations p^x-b^y=c and a^x+b^y=c^z[J].J Number Theory,1993,44:153-165.

共引文献12

同被引文献14

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部