期刊文献+

广义θ-链的区间边着色

Interval edge-coloring of the generalized θ-chain
原文传递
导出
摘要 如果图 G 的一个边着色用了 1,2,…,t 中的所有颜色,并且关联于 G 的同一个顶点的边上的颜色各不相同,且这些颜色构成了一个连续的整数区间,则称这个边着色是 G 的区间 t-着色。如果对某个正整数 t,G 有一个区间 t-着色,则称 G 是可区间着色的。所有可区间着色的图构成的集合记作 N。图 G 的亏度 def( G)是粘在 G 的顶点上使它可区间着色的悬挂边的最小数目,显然,G∈N 当且仅当 def( G)= 0。广义θ-链是把路 P =[v0,v1,…,v k]( k≥1)的每一条边 vi-1 vi( i = 1,2,…,k),用 mi≥2 条两两内部不交的( vi-1,vi)-路替换掉而得到的简单图,记作θm1,m2,…,mk。把广义θ-图亏度的结论进行推广,确定了θm1,m2,…,mk的亏度。 An edge-coloring of a graph G with colors 1,2,…,t is an interval t-coloring if all colors are used,and the colors of edges incident to each vertex of G are distinct and form a continuous interval of integer. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. The set of all interval colorable graphs is denoted by N. The deficiency def( G) of a graph G is the minimum number of pendant edges whose attachment to G makes it interval colorable. Obviously,G ∈N if and only if def( G)= 0. A generalized θ-chain,denoted by θm1,m2,…,mk,is a simple graph obtained by substituting each edge vi-1 vi of the path P =[v0,v1,…,v k]( k≥1) for mi≥2 pairwise internally disjoint ( vi-1,vi )-paths,where i = 1,2,…,k. In this paper,the conclu- sions of deficiency of generalized θ-graph are generalized,and the deficiency of the generalized θ-chain θm1,m2,…,mk is determined.
作者 陈勋 黄琼湘 陈琳 CHEN Xun;HUANG Qiong-xiang;CHEN Lin(College of Mathematics and System Science,Xinjiang University,Urumqi 830046,Xinjiang,China;College of Medical Engineering and Technology,Xinjiang Medical University,Urumqi 830011,Xinjiang,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2019年第6期59-70,共12页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11671344)
关键词 区间边着色 亏度 广义θ-图 广义θ-链 interval edge-coloring deficiency generalized θ-graph generalized θ-chain
  • 相关文献

参考文献1

二级参考文献9

  • 1Asratian A S, Kamalian R R. Investigation on interval edge-colorings of graphs [J]. Combin Theory Ser, 1994,B62:34-43.
  • 2Sevastjanov S V. On interal colorability of a bipartite graph (in Russian)[J]. Met Dis Kret Analiz, 1990,50: 61-72.
  • 3Asratian A S, Denley T M J, Haggkvist R. Bipartite Graphs and their Applications [M]. Cambridge:Cambridge University Press, 1998.
  • 4Giaro K. Kubale M. Consecutive edge-colorings of complete and incomplete Cartesian products of graphs[J]. Congr Numer, 1997,128:143-149.
  • 5Giaro K, Kubale M. Compact scheduling of zero-one time operations in multistage systems[J]. Discrete Appl Math, 2004,145: 95-103.
  • 6Giaro K, Kubale M, Malafiejski M. Compact scheduling in open shop with zero-one time operations[J]. INFOR,1999,37: 37-41.
  • 7Hanson D, Loten C O M, Toff B. On interval colorings of bi-regular bipartite graphs[J]. Ars Combin,1998,50:23-32.
  • 8Giaro K, Kubale M, Malafiejski M. Consecutive colorings of the edges of general graphs[J]. Discrete Math,2001,236:131-143.
  • 9FENG yong-de, Zhai shao-hui. Consecutive colorings of the edges of θ-graph [J]. Journal of Xinjiang University(Natural Science Eidition), 2005,22(2):147-150.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部