期刊文献+

装配作业车间调度的免疫粒子群算法实现 被引量:5

Implementation of Immune Particle Swarm Optimization Algorithm for Assembly Job Shop Scheduling
下载PDF
导出
摘要 装配作业车间调度问题(AJSSP)是一类重要的调度问题,由于其复杂性高和求解时间长,因此寻找高效的求解算法具有重要的意义。针对多层装配工序的作业车间调度问题给出3种求解方案:粒子群算法(PSO)、基于浓度抑制的免疫粒子群算法(IPSO)和采用“精英替代”策略的粒子群算法(EIPSO),并通过大量计算验证3种算法的优劣性。结果表明,IPSO优于PSO和EIPSO。IPSO由于免疫算法的加入,避免了PSO算法中高浓度粒子的过度复制和过早收敛,提高了全局搜索能力,能更好地求解装配作业车间调度问题。 Assembly job shop scheduling problem (AJSSP) is an important form of scheduling problem. It is important to find efficient solution algorithms because of its complexity and long solution time consumption. This paper proposes three algorithms for AJSSP: particle swarm optimization (PSO), immune particle swarm optimization (IPSO) based on concentration inhibition concept and IPSO incorporating elite preserving technique (EIPSO), then verify the advantages and disadvantages of the three algorithms through a large number of solution examples. The results show that IPSO is superior to PSO and EIPSO. Due to the addition of immune algorithm, IPSO avoids excessive replication and premature convergence of high-concentration particles in PSO algorithm, improves global search ability, and can better solve assembly job shop scheduling problems.
作者 孙虎 周晶燕 SUN Hu;ZHOU Jingyan
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2019年第3期282-286,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
关键词 装配作业车间调度 粒子群优化算法 免疫算法 精英替代策略 优化算法 assembly job shop scheduling particle swarm optimization algorithm immune algorithm elite preservation strategy optimization algorithm.
  • 相关文献

参考文献1

二级参考文献7

  • 1彭银香,何小东,朱志勇.基于免疫算法的多维关联规则挖掘方法[J].微计算机信息,2007,23(3):171-173. 被引量:4
  • 2郑日荣,毛宗源,罗欣贤.基于欧氏距离和精英交叉的免疫算法研究[J].控制与决策,2005,20(2):161-164. 被引量:31
  • 3D Dasgupta, Ed. Artificial Immune Systems and Their Applications [M]. Heidelberg, Germany: Springer- Verlag, 1999.
  • 4S A Hofmeyr and S Forrest. Architecture for an artificial immune system[J]. Evolutionary Computation, 2000,8(4) :443 -473.
  • 5T Fukuda, K Moil, M Tsukiyama. Parallel search for multi - modal function optimization with diversity and learning of immune algorithm, in Artificial Immune Systems and Their Applications, (D Dasgupta, Ed. ) [M]. Heidelberg, Germany: Springer- Verlag, 1999. 210-220.
  • 6K A De Jong. An analysis of the behavior of a class of genetic adaptive systems [ D ]. PhD Dissertation, University of Michigan, No. 76 -9381, 1975.
  • 7G Rudolph. Convergence analysis of canonical genetic algorithms [J]. IEEE Transactions on Neural Networks, 1994,5 (1) : 96 - 101.

共引文献12

同被引文献24

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部