摘要
The nonlinear dynamic behaviors of a double cable-stayed shallow arch model are investigated under the one-to-one-to-one internal resonance among the lowest modes of cables and the shallow arch and external primary resonance of cables. The in-plane governing equations of the system are obtained when the harmonic excitation is applied to cables. The excitation mechanism due to the angle-variation of cable tension during motion is newly introduced. Galerkin’s method and the multi-scale method are used to obtain ordinary differential equations (ODEs) of the system and their modulation equations, respectively. Frequency- and force-response curves are used to explore dynamic behaviors of the system when harmonic excitations are symmetrically and asymmetrically applied to cables. More importantly, comparisons of frequency-response curves of the system obtained by two types of trial functions, namely, a common sine function and an exact piecewise function, of the shallow arch in Galerkin’s integration are conducted. The analysis shows that the two results have a slight difference;however, they both have sufficient accuracy to solve the proposed dynamic system.
The nonlinear dynamic behaviors of a double cable-stayed shallow arch model are investigated under the one-to-one-to-one internal resonance among the lowest modes of cables and the shallow arch and external primary resonance of cables. The in-plane governing equations of the system are obtained when the harmonic excitation is applied to cables. The excitation mechanism due to the angle-variation of cable tension during motion is newly introduced. Galerkin’s method and the multi-scale method are used to obtain ordinary differential equations(ODEs) of the system and their modulation equations, respectively. Frequency-and force-response curves are used to explore dynamic behaviors of the system when harmonic excitations are symmetrically and asymmetrically applied to cables. More importantly, comparisons of frequency-response curves of the system obtained by two types of trial functions, namely, a common sine function and an exact piecewise function, of the shallow arch in Galerkin’s integration are conducted.The analysis shows that the two results have a slight difference; however, they both have sufficient accuracy to solve the proposed dynamic system.
基金
Project supported by the National Natural Science Foundation of China(Nos.11572117,11502076,and 11872176)