期刊文献+

基于视觉的行人引领移动机器人导航方法研究 被引量:5

A Vision-based Leader-Guided Navigation Method to Mobile Robots
下载PDF
导出
摘要 移动机器人通过跟随领航员以实现导航是一种便捷的导航方式。针对行人引领导航中的领航员定位问题,提出了一种基于视觉的行人引领导航方法。该方法利用卡尔曼滤波器预测领航员的位置和尺度,并基于深度神经网络的行人检测器提供的结果更新滤波器的状态。为了关联检测结果和卡尔曼滤波器预测结果,提出了2个指标用于衡量两者之间的关联性。其中,为了提高在多个行人中辨认领航员的可靠性,创新性地引入了一个孪生神经网络,使用该网络全连接层提取的特征作为候选人的特征描述子,并通过计算特征之间的余弦距离来验证检测器检测到的行人身份。此外,当卡尔曼滤波器跟踪领航员失败时,综合考虑检测结果和孪生网络的判断结果重新初始化卡尔曼滤波器,以实现持续的领航员定位。视频实验和物理机器人实验验证了所提出的方法的有效性和可靠性。 Navigation by following a specified leader is a convenient way for mobile robots.In order to solve the problem of the leader positioning,a vision-based leader-guided navigation approach for mobile robots is proposed.A Kalman filter is utilized to predict the locations and scales of the leader,which updates the states according to the results obtained by a CNN-based pedestrian detector.Two criteria are used to evaluate the relationship between the detection results with the result of the Kalman filter.Specifically,a Siamese network is employed to improve the reliability of distinguishing the leader among multiple pedestrians.The features extracted from the fully connected layer of the Siamese network are innovatively adopted to verify the identities of the pedestrians detected by the detector through calculating the cosine distances between these features.In addition,when the Kalman filter fails to track the leader,the Kalman filter is re-initialized by considering the detection results and the judgment results of the Siamese network,so as to achieve continuous navigator positioning.The effectiveness and reliability of the proposed navigation approach is verified by video experiments and actual experiments on a mobile robot.
作者 庞磊 曹志强 喻俊志 PANG Lei;CAO Zhi-qiang;YU Jun-zhi(State Key Laboratory of Management and Control for Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
出处 《导航定位与授时》 2019年第4期26-32,共7页 Navigation Positioning and Timing
基金 国家自然科学基金(61633020) 北京市自然科学基金(4161002)
关键词 引领导航 领航员跟随 卡尔曼滤波 检测器 孪生神经网络 Leader-guided navigation Leader following Kalman filter Detector Siamese network
  • 相关文献

参考文献3

二级参考文献16

  • 1刘士荣,孙凯,张波涛,杨帆.基于改进Camshift算法的移动机器人运动目标跟踪[J].华中科技大学学报(自然科学版),2011,39(S2):223-226. 被引量:11
  • 2沈志华,赵英凯,王晓荣,严卉,姜志兵.全自主机器人双目视觉运动检测研究[J].计算机测量与控制,2006,14(1):26-27. 被引量:5
  • 3林填锋,杨洁霞.基于Kinect的人体识别技术的一些改进[J].电脑知识与技术,2012,8(21):5220-5223.
  • 4Vincze M,Schlemmer M,Gemeiner P,et al. Vision for robotics: A tool for model-based object tracking [J]. Robotics & Auto-Mation Magazine, 2005,12 (4) :53-64.
  • 5Fang J X,Yang J,Liu H X. Efficient and robust fragments- based multiple kernels tracking[J]. International Journal of Electronics and Communications ,2011,65 ( 11 ):915-925.
  • 6Adam A, Rivlin E,Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. IEEE Computer So- ciety Conference on Computer Vision and Pattern Recogni- tion, New York, 2006:798-805.
  • 7Rosales R, Sclaroff S. Improved tracking of multiple humans with trajectory prediction and occlusion modeling[R]. Boston University Computer Science Department, 1998.
  • 8Xia L,Chen C C,Aggarwal J K. Human detection using depth information by Kinect[C]. Computer Vision and Pattern Recognition Workshops (CVPRW), 2011:15-22.
  • 9张娟,潘建寿,吴亚鹏,刘继艳.基于双目视觉的运动目标跟踪与测量[J].计算机工程与应用,2009,45(25):191-194. 被引量:15
  • 10颜佳,吴敏渊,陈淑珍,张青林.跟踪窗口自适应的Mean Shift跟踪[J].光学精密工程,2009,17(10):2606-2611. 被引量:16

共引文献21

同被引文献40

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部