期刊文献+

尾流算法与风向变化对海上风机排布影响研究 被引量:4

Research on Offshore Wind Farm Units Layout Considering the Algorithm of Wake Model and the Change of Wind Direction
下载PDF
导出
摘要 [目的]为了获得海上风场的最优机位排布方案,提升海上项目在全生命周期内的经济收益,必须对影响发电量的关键因素做详细分析。[方法]结合海上风场工程项目的实际案例,基于自主开发的海上机位自动优化算法,分别应用Jensen和Larsen两种单机组尾流模型的技术理论,对比了多机组间三种不同的尾流组合叠加方式,并考虑了风向年际变化对现有机组排布的影响,给出了对应的最优机位排布方案。[结果]计算结果显示:海上风向的年际变化是影响机位排布的关键因素,使用不同尾流模型对机位排布的影响较小,多机组间尾流叠加方式对机位排布没有影响。[结论]研究成果为工程项目中最优机位排布的选择提供了关键依据,避免了风场25年全生命周期内上亿元的经济损失。 [Introduction] The paper aims to obtain the optimal layout of offshore wind farm and gain the maximum profit in the project life-cycle,it is high necessary to analyze its impact factors.[Method] The own developed application was used to compare the wake models between Jensen and Larsen,different superposition algorithm among wind turbines and the interannual variability of wind direction,this disquisition had combined the practical offshore wind farm case to analyse and provide the optimal layout.[Result] The results we obtained demonstrate that the interannual variability of wind direction is the most key factor to layout,followed by the different wake model,with superposition algorithm least.[Conclusion] This work provides some guidance for further project on choosing the optimal layout,thus the billions of dollars in losses caused by interannual variability of wind direction can be avoided in life-cycle of 25 years.
作者 吴迪 刘怀西 苗得胜 WU Di;LIU Huaixi;MIAO Desheng(Mingyang Smart Energy Group Corporation,Zhongshan 528437,China)
出处 《南方能源建设》 2019年第2期54-58,共5页 Southern Energy Construction
基金 广东省海洋经济创新发展区域示范专项项目“高性能6.0 MW海上风电海洋工程装备的研发及产业化”(GD2015-C1-001)
关键词 海上风场 最优机位排布 风向年际变化 尾流模型 尾流叠加方式 the offshore wind farm the optimal layout interannual variability of wind direction wake model superposition algorithm among wind turbines
  • 相关文献

参考文献4

二级参考文献25

  • 1张玉良,李仁年,杨从新.水平轴风力机的设计与流场特性数值预测[J].兰州理工大学学报,2007,33(2):54-57. 被引量:17
  • 2Tangler J, David K J. Wind turbine post-stall airfoil performance characteristics guidelines for blade-ele- ment momentum methods[A]. The 43th AIAA Aero- space Sciences Meeting and Exhibit[C]. Reno, Nevad-a,2005.
  • 3Duque E P N, Johnson W, Cortes R, et al. Numerical Predictions of Wind Turbine Power and Aerodynamic Loads for the NREL Phase II Combined Experiment Rotor[R]. AIAA,2000-0038.
  • 4Kasmi A E, Masson C. An extended k- e model for turbulent flow through horizontal axis wind turbines [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96 : 103-122.
  • 5Ren N X,Ou J P. Aerodynamic interference effect be- tween large wind turbine blade and tower[A]. Com- putational Structural Engineering[C]. 2009.
  • 6Barthelmle R J, Hansen K,Schepers J G, et al. Model- ing and measuring flow and wind turbine wakes in large wind farms offshore[J]. Wind Energy, 2009, 12:431-444.
  • 7Kusiak A, Song Z. Design of wind farm layout for maximum wind energy capture[J]. Renewable Ener- gy ,2010,35: 685-694.
  • 8Whale J, Papadopoulos K H, et al. A study of the near wake structure of a wind turbine comparing measure- ments from laboratory and full-scale experiments[J]. Solar Energy, 1996,56(6): 621-633.
  • 9Neff D E, Meroney R N. Mean wind and turbulence characteristics due to induction effects near wind tur- bine rotors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997,69:413-422.
  • 10Magnusson M, Smedman A S. Air flow behind wind turbines[J]. Journal of Wind Engineering and In- dustrial Aerodynamics, 1999,80 : 169-189.

共引文献54

同被引文献26

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部