期刊文献+

分块低秩图的遥感影像半监督分类应用 被引量:7

Semi-Supervised Classification Application of Remote Sensing Image Based on Block Low-Rank Images
下载PDF
导出
摘要 随着信息技术和对地观测技术的飞速发展,遥感技术在社会生活和经济建设中发挥着越来越重要的作用。分类模型的准确性和抗干扰能力对精确绘制复杂的土地覆盖和土地利用分类至关重要。针对大规模遥感数据难以获取大量标记数据的问题,基于低秩表示模型和图的半监督学习方法,提出了基于分块低秩图的大规模遥感图像半监督分类应用。为了解决低秩表示计算复杂度高的问题,将预处理后的图像按像素进行分块处理,并在每个块上实现低秩表示。在WorldView-2影像上的分类结果表明,在少量标记样本下,该方法利用简单的最近邻分类器即可实现对城市地物的精确分类。因此,该方法有效地提高了土地覆盖的分类精度,在遥感图像分类中具有较高的效率。 With the rapid development of information technology and earth observation technology, remote sensing technology is playing an increasingly important role in our life and economic construction. The accuracy of classification model and its anti- jamming capability are crucial for the accurately mapping of complex land cover and land-use categories. This paper deals with the limitations of insufficient labeled samples of large-scale high-resolution remote sensing images. Based on the low-rank representation and semi-supervised learning methods, a large-scale remote sensing image classification method is proposed. In order to reduce the exponentially growing computational complexity of low-rank method, the image is divided into blocks and the low-rank representation is implemented for each block respectively. The results implemented on WorldView- 2 remote sensing data show that the proposed method achieves relatively high classification accuracy with nearest neighbor classifier under few labeled samples. Therefore, the proposed remote sensing image classification method can effectively improve the accuracy of land cover classification, and has high efficiency in remote sensing image classification.
作者 祖宝开 夏克文 牛文佳 姜晓庆 ZU Baokai;XIA Kewen;NIU Wenjia;JIANG Xiaoqing(School of Electronics and Information Engineering,Hebei University of Technology,Tianjin 300401,China;Key Lab of Big Data Computation of Hebei Province,Hebei University of Technology,Tianjin 300401,China;School of Information Science and Engineering,University of Jinan,Jinan 250022,China)
出处 《计算机科学与探索》 CSCD 北大核心 2019年第7期1217-1226,共10页 Journal of Frontiers of Computer Science and Technology
基金 河北省自然科学基金No.E2016202341 河北省高等学校科学技术研究项目No.BJ2014013~~
关键词 遥感图像 低秩表示 分类 remote sensing image low-rank representation classification
  • 相关文献

参考文献1

二级参考文献12

  • 1Duda R O,Hart P E,Stork D G.Pattern classification[M].New York:John Wiley & Sons,2001.
  • 2Turk M,Pentland A.Face recognition using eigenfaces[C] ∥Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Maui:IEEE,1991:586-591.
  • 3Martinez A M,Kak A C.PCA versus LDA[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233.
  • 4Zhu X.Semi-supervised learning literature survey[EB/OL].[2008-07-19].http://www.cs.wisc.edu/-jerryzhu/pub/ssl_survey.pdf.
  • 5Cai D,He X F,Han J W.Semi-supervised discriminant analysis[C] ∥Proc of the 11th IEEE International Conference on Computer Vision.Riode Janeiro:IEEE,2007:1-7.
  • 6Qiu H N,Lai J H,Huang J,et al.Semi-supervised discriminant analysis based on UDP regularization[C] ∥Proc of the 19th International Conference on Pattern Re-cognition.Tampa:IEEE,2008:1-4.
  • 7Yang J,Zhang D,Yang J Y,et al.Globally maximizing,locally minimizing:unsupervised discriminant projection with application to face and palm biometrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(4):650-664.
  • 8Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2327.
  • 9Yan S C,Xu D,Zhang B Y,et al.Graph embedding and extensions:a general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51.
  • 10Georghiades A S,Belhumeur P N,Kriegman D J.From few to many:illumination cone models for face recognition under variable lighting and pose[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):643-660.

共引文献4

同被引文献36

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部