期刊文献+

基于改进二维Haar小波的图像去噪算法 被引量:3

Image Denoising Algorithm Based on Improved 2D Haar Wavelet
下载PDF
导出
摘要 小波分解层数和阈值函数的选择会影响图像去噪的性能,为此提出了一种改进二维Haar小波阈值法实现图像去噪。该方法使用子带标准差来确定二维Haar小波变换后高频子带中信号能量的强弱,并以此决定是否进行下一层的小波分解。提出一种新的阈值函数,该阈值函数是连续的,可以克服硬阈值函数对于小波系数过度收缩的缺点,以及软阈值处理使图像边缘模糊的缺点,能在噪声小波系数和噪声之间提供更平滑的过渡图像信号小波系数。实验结果表明:所提方法在峰值信噪比(PSNR)和均方误差(MSE)方面优于其他方法。 The selection of wavelet decomposition levels and threshold function affects the performance of image denoising.An improved 2D Haar wavelet threshold method was proposed to realize image denoising in this paper.This method used sub-bands standard deviation to determine the signal energy in high frequency sub-bands after 2D Haar wavelet transform,and then decided whether to perform the next level of wavelet decomposition or not.In addition,a new threshold function was proposed,which is continuous.It can overcome the shortcomings of the hard threshold function that shrinks the wavelet coefficients excessively,and the soft threshold processing that blurs the edge of the image.It can provide a smoother wavelet coefficients between noise and wavelet coefficients of the transitional image signal.The experimental results show that the proposed method is superior to other methods in in peak signal-to-noise ratio (PSNR) and mean square error (MSE).
作者 牟奇春 MOU Qichun(School of Software,Chengdu Polytechnic,Chengdu 610041,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2019年第6期177-183,共7页 Journal of Chongqing University of Technology:Natural Science
基金 四川省教育厅2018年重点项目“现代展厅综合控制系统”(18ZA0170)
关键词 二维Haar小波 阈值函数 图像去噪 峰值信噪比 均方误差 2D Haar wavelet threshold function image denoising peak signal to noise ratio mean square error
  • 相关文献

参考文献1

二级参考文献19

  • 1Babaud J,Witkin A P,Baudin M,et al.Uniqueness of the Gaussian kernel for scale-space filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986(1):26-33.
  • 2Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 3Tomasi C,Manduchi R.Bilateral filtering for gray and color images[C]//6th International Conference on Computer Vision,1998:839-846.
  • 4Rudin L I,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D:Nonlinear Phenomena,1992,60(1):259-268.
  • 5Chang S G,Yu B,Vetterli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(9):1532-1546.
  • 6Luisier F,Blu T,Unser M.A new SURE approach to image denoising:interscale orthonormal wavelet thresholding[J].IEEE Transactions on Image Processing,2007,16(3):593-606.
  • 7Buades A,Coll B,Morel J M.A non-local algorithm for image denoising[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,2:60-65.
  • 8Kumar B K S.Image denoising based on non-local means filter and its method noise thresholding[J].Signal,Image and Video Processing,2013,7(6):1211-1227.
  • 9Dabov K,Foi A,Katkovnik V,et al.Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095.
  • 10Maggioni M,Katkovnik V,Egiazarian K,et al.Nonlocal transform-domain filter for volumetric data denoising and reconstruction[J].IEEE Transactions on Image Processing,2013,22(1):119-133.

共引文献14

同被引文献35

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部