期刊文献+

随机冲击下多相关退化的竞争失效可靠性模型 被引量:4

Competition Failure Reliability Model for Multi-Correlation Degradation Under Random Shock
下载PDF
导出
摘要 针对伴随随机冲击及多性能退化的系统,在假设性能退化过程均为线性退化过程、冲击过程为极值冲击模型的基础上,引入Copula的相关理论。考虑多性能退化模式之间的相关性,分析了性能退化对突发失效阈值的影响,建立了系统的可靠度评估模型,并给出了时变相关性拟合Copula模型选择方法。算例结果表明了模型的有效性与工程可操作性。 For the systems with random impact and multi-performance degradation,the theory of Copula was introduced on the assumption that the performance degradation process is a linear degradation process,and the impact process is an extreme impact model.Considering the correlation between multi-performance degradation modes,the influence of performance degradation on the burst failure threshold was analyzed,and the reliability evaluation model of the system was established.The selection method of dynamic correlation fitting Copula model was given.The example shows the effectiveness and engineering operability of the model.
作者 刘汉葱 唐家银 刘赪 谭启涛 LIU Hancong;TANG Jiayin;LIU Cheng;TAN Qitao(Department of Statistics,College of Mathematics,Southwest Jiaotong University,Chengdu 611756,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2019年第6期227-235,共9页 Journal of Chongqing University of Technology:Natural Science
基金 中国铁路总公司科技研究开发计划项目(2017J003-H) 四川省统计科学研究计划项目(2016sc50) 中央高校基本科研业务费专题项目(2682017ZDPY13)
关键词 随机冲击 多退化路径 竞争失效 时变COPULA random shock multi-correlation degradation competition failure time-varying copula
  • 相关文献

参考文献2

二级参考文献19

  • 1Lu C J, Meeker W O. Using degradation measures to estimate a time-to-failure distribution [ J ]. Technometrics, 1993, 35(2) : 161 - 174.
  • 2Singpurwalla N D. Survival in dynamic environments [ J ]. Statistical Science, 1995, 10( 1 ) : 86 - 103.
  • 3Kharoufeh J P, Cox S M. Stochastic models for degradation- based reliability [ J ]. liE Transactions, 2005,37 ( 6 ) : 533 - 542.
  • 4Nakagawa T. Shock and damage models in reliability theory [ M ]. Springer, 2007.
  • 5Liu Y, Huang H Z, Pham H. Reliability evaluation of systems with degradation and random shocks [ C ]. Reliability and Maintainability Symposium, RAMS Annual. IEEE, 2008 : 328 - 333.
  • 6Chien Y H, Sheu S H, Zhang Z G, et al. An extended optimal replacement model of systems subject to shocks [ J ]. European Journal of Operational Research, 2006, 175 ( 1 ) : 399 -412.
  • 7Bai J M, Li Z H, Kong X B. Generalized shock models based on a cluster point process [ J 1- IEEE Transactions on Reliability, 2006, 55 ( 3 ) : 542 - 550.
  • 8Ye Z S, Tang L C, Xu H Y. A distribution-based systems reliability model under extreme shocks and natural degradation [ J ]. IEEE Transactions on Reliability, 2011,60 ( 1 ) : 246 - 256.
  • 9Wang G J, Zhang Y L. A shock model with two-type failures and optimal replacement policy [ J ]. International Journal of Systems Science, 2005, 36(4): 209-214.
  • 10Li W, Pham H. An inspection-maintenance model for systems with multiple competing processes[ J]. IEEE Transactions on Reliability, 2005, 54(2): 318-327.

共引文献19

同被引文献53

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部