期刊文献+

拓扑空间公理的教学困难成因与基于收敛“直观”的对策

The Reason of Teaching Difficulties on Axioms of Topological Spaces and Countermeasure Based on Convergence’s Intuition
下载PDF
导出
摘要 指出分析学背景的欠缺,拓扑学所使用的形式公理化方法以及学生对公理化方法的陌生,导致了拓扑空间公理的教学困难.针对拓扑空间开(闭)集公理的引入教学,对策是在实直线上,从关于数列极限运算封闭的“直观”属性出发,用开区间和闭区间对数列极限运算封闭的对偶性,分别定义实数集上的开集与闭集,则二者自然地呈现对偶性,利于理解开集的“有限交与任意并封闭”公理,以期缓解拓扑空间公理的教学困难. It points out the lack of analytical background, the formal axiomatic methods used in topology, and students’unfamiliarity with axiomatic methods, leads to the teaching difficulties on axioms of topological spaces. On teaching open(closed) sets’s axioms in topological spaces, solution is inspired by "intuitive" property of sequence limits’closedness of open and closed intervals on real numbers. Then open sets and closed sets on real numbers are respectively defined, and they are naturally dual. Consequently, it would be helpful to understand open set axiom of "closedness to arbitrary union and finite intersection" and relieve teaching difficulties on the axiom of topological spaces.
作者 武利刚 WU Li-gang(School of Science,Beijing University of Civil Engineering and Architecture,Beijing 102616,China)
出处 《大学数学》 2019年第3期44-48,共5页 College Mathematics
基金 北京建筑大学博士科研启动基金支持(101102107)
关键词 拓扑学 形式公理化方法 开集 闭集 收敛 topology formal axiomatic methods open sets closed sets convergence
  • 相关文献

参考文献7

二级参考文献14

  • 1KLAMBAUER G. Real Analysis[ M ]. American Elsevier Publishing Co. inc. , 1973.
  • 2НАТНСОН И.П.实变函数论[M].北京:商务印书馆,1953.
  • 3魏勇.实变函数论[M].成都:西南交通大学出版社,2007.
  • 4[美]J L 凯莱.一般拓扑学[M].北京:科学出版社,1982..
  • 5江泽坚,吴智泉.实变函数论[M].北京:人民教育出版,1961.
  • 6J R.曼克勒斯.拓扑学基本教程.北京:科学出版社.
  • 7胡作玄.拓扑学简介[J]自然杂志,1982(07).
  • 8王绵森.略谈数学中的空问概念[J].高等数学研究,1998,1:001.
  • 9Moore G H. The Emergence of Open Sets, Closed Sets, and Limit Points in Analysis and Topologyl-J]. Historia Mathematica, 2008, 35(3): 220-241.
  • 10Kelley J L. General Topology[M]. New York: Van Nostrand, 1955: 37.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部