期刊文献+

从Lagrange恒等式到Hadamard不等式

From Lagrange Identity to Hadamard Inequality
下载PDF
导出
摘要 从简单等式(a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2,联想到Lagrange恒等式,并借用Grassmann代数得到该等式的多变量推广.考虑一般的Lagrange恒等式的几何意义,得到关于k个n维向量张成的平行多面体体积的恒等式.作为应用,分别得出CauchyGSchwartz不等式和Hadamard不等式的几何证明. This paper starts from a simple identity (a 2+b 2)(c 2+d 2)= (ac+bd) 2+ (ad-bc) 2 , to the Lagrange identity, and generalizes this identity to multiple variables by Grassmann algebra. Considering the geometric meanings of the generalized Lagrange identity, we get an identity involving the volume of a parallelohedron generated by k n -dimensional vectors. As applications, we obtain geometric proofs of Cauchy-Schwartz inequality and Hadamard inequality.
作者 周久儒 ZHOU Jiu-ru(School of Mathematical Sciences, Yangzhou University, Yangzhou Jiangsu 225002, China)
出处 《大学数学》 2019年第3期111-114,共4页 College Mathematics
基金 江苏省高校品牌专业建设工程资助项目(PPZY2015B109) 江苏省高校自然科学项目(15KJB110024)
关键词 Lagrange恒等式 GRASSMANN代数 CauchyGSchwartz不等式 HADAMARD不等式 Lagrange identity Grassmann algebra Cauchy-Schwartz inequality Hadamard inequality
  • 相关文献

参考文献2

二级参考文献1

  • 1数学手册[M].北京:高等教育出版社,1979.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部