摘要
研究了一种带治疗的病媒传播疾病的流行模型.得到了模型的基本再生数R0,模型的平衡点和阈值由R0确定.利用Bendixson-Dulac定理,证明了当R0>1时,该模型的唯一正平衡点是全局稳定的.该结果可以帮助探索控制媒介传染病传播的方法.最后对模型进行了数值模拟,验证了该结论.
In this paper, we investigated an epidemic model of a vector-borne disease with treatment. The reproduction number R0 of the model is obtained. The equilibria and the threshold of the model were determined by R0. By using Bendixson-Dulac theorem, it is shown that the unique positive equilibrium for the model is global stable if R0 is greater than 1. Theoretical results obtained here can help us to explore the method of controlling the spread of vector-borne disease. Finally, numerical simulations for the model are presented to illustrate our mathematical findings.
作者
郭树敏
Mini GHOSH
GUO Shumin;Mini GHOSH(Department of Mathematics and Statistics,Shaoguan University,Shaoguan 512005,Guangdong,China;School of Advanced Sciences,Chennai Campus,Vellore Institute of Technology University,Chennai 600048,India)
出处
《上海师范大学学报(自然科学版)》
2019年第3期327-337,共11页
Journal of Shanghai Normal University(Natural Sciences)
基金
The Science and Technology Projects of Shaoguan City(2016-14)
The National Natural Science Foundation of China(11771017)
关键词
媒介传染病
数学模型
稳定性
控制措施
vector-borne disease
mathematical model
stability
control measures